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SUMMARY 

Recent  satellites have carried long  extendable  appendages of the 
type classified as thin-walled  cylinders of open section  for  such  di- 
verse  applications as dipole  antennas,  gravity-gradient  stabilization 
booms,  and  electric-field  probes.  Actual  flight  data show that  several 
satellites which  deploy these long appendages (or antennas, as they  will 
be referred to)  exhibit  varying  degrees of anomalous  spacecraft body 
motion  while  exposed  to direct  sunlight. NASA/GSFC hypothesis is 
that  in  many cases the  observed  oscillations are thermally induced. 

This document  presents  the  equations which describe  the coupled 
non-planar  transverse and torsional  vibrations of such an antenna when 
i t  is exposed to a directional  solar  thermal  field  (sunlight), To obtain 
a numerical  solution,  the  equations are  specialized to  the case of a 
clamped-free  cylinder of open section having the  nominal  character- 
istics of the  antennas  in  orbit.  Comparison of results with actual  flight 
data  shows  that  this  hypothesis  leads to conclusions  consistent with the 
observed phenomena.  The numerical  examples show that  the  problem 
of thermally-induced  vibration  can  be  eliminated by literally  zipper- 
ing  the  open  section of the  antenna,  in  various  fashions, so as to  effec- 
tively  increase its torsional  rigidity.  Flight  data  from  the Radio 
Astronomy  Explorer  satellite (which has four 750-foot stable  zippered 
antennas)  and  the  Orbiting  Geophysical  Observatory, OGO VI, (which 
has two 30-foot stable  torsionally  rigid  electron  probes)  support this 
conclusion. 
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COUPLED THERMALLY-INDUCED  TRANSVERSE  PLUS 
TORSIONAL  VIBRATIONS OF A THIN-WALLED 

CYLINDER OF OPEN SECTION 

by 
Harold P. Frisch 

Gocldavd Space Flight Centev 

INTRODUCTION 

Prior to  the  flight of RAE* all satel- 
lites having  long  extendable  appendages 
used  the  basic STEM+ type  boom,  shown 
in  Figure 1, for  storage and deployment. 
It is made  from a long,  thin prestressed 
tape which is rolled on a  drum  for  stor- 
age and when extended takes on a tubular 
shape. Such booms  have  been  used on 
OGOt IV and V as electric  fieldprobes, 
on ATS-A: OV1-10, GGSE 'I III, V and VI 
and several  other Navy and Air Force 
satellites as gravity-gradient  booms. 

UNFURLING ELEMENT 
GUIDE R O L L E R S  'lNloN 

/ \  \ 
UNFURLING ELEMENT 

STORAGE DRUM 

Figure 1-The STEM principle. 

Anomolous Motion o f  Booms 

On each of the  aforementioned  satellites, with the  exception of RAE, varying  degrees of anom- 
alous  spacecraft body motion has  been  observed.  This  motion is known to  be  excited only when the 
satellite is in full sunlight  and its magnitude  has at times been large enough to  impair  severely  the 
performance  and  stability of the  satellite.** 

"~ 

'RAE-Radio  Astronomy  Explorer 
?STEM-storable  tubular extendable member 
tOGO-Orbiting Geophysical  Observatory 
BATS-Applications  Technology  Satellite 
IIGGSE-Gravity-Gradient Stabilization  Experiment 

**General  Electric  Study Report for NASA/GSFC Document No. 695D4215, 15 Oct. 1968 "Gravity Gradient  Rod  Thermal  Flutter  Study 
Report" 



The  problem first manifested itself during  the  initial  phases of the  flight of OGO IV. Soon 
after the  deployment of the 60' open-section  cylinder,  used as an electric-field  probe on this sat- 
ellite, in  full  sunlight, a disturbance  was  noted by the  control-system  sensors.  They  indicated  that 
the satellite body was  oscillating rt1.5" about  the axis of maximum  moment of inertia at the  fundamen- 
tal bending  frequency of the satellite boom system.  Furthermore,  the  oscillation  persisted  whenever 
the satellite was  in  sunlight  and  rapidly  damped down every  time it entered  eclipse.  From a knowl- 
edge of the  elastic  modes of vibration of OGO IV it has  been  calculated*  that a *1.5" oscillation of 
the satellite body corresponded to a rt20-foot oscillation of the antenna tip. 

Before  the  launch of O W  IV, a study had  been  completed  (Reference 1) which  showed  that, 
because of the  extreme weakness of the boom in  torsion,  the  static-thermal-equilibrium  shape 
that  the boom could assume  in a solar  thermal  field  was  not unique. It was postulatedt that, 
if torsional motion were  excited,  the  thermal  equilibrium  position  toward  which  the  antenna 
was moving would be  continually  changing in  time. It was further  hypothesized that, if  the 
proper  relationship  existed between  the  motion of the  position of thermal  equilibrium and  the  mo- 
tion of the boom, the  observed  anomalous  motion could  be thermally-induced. 

This  paper is intended  to  be a complete  documentation of the  theory of thermally-induced  vibra- 
tion of spacecraft  booms;  the  basic findings have  been previously  published  in a highly condensed  form." 

Soon after the  initial  postulation  that  the  anomalous  motion  on OGO IV could  be caused by a 
thermally-induced  oscillation of the  attached boom, two other  variations of the  theory  were  postu- 
lated by othei  personnel" of Goddard  Space Flight  Center. 

The  first  variation,  set down by G. Banks,** showed  that a cantilevered  beam could be driven 
unstable by solar  energy if the  source  were  oriented behind  the  clamped  root.  The  solution  was 
obtained by investigating  the  stability  characteristics of the equation  which  defined  the  motion of 
a single-degree-of-freedom  analogy of the system.  Results of this analysis indicated  also  that 
only a small  amount of damping is needed  to stabilize  the  system.  This  variation was therefore 
dismissed as not practically  applicable  to  present  spacecraft  problems. 

The  second  variation, set down by J. Donohue,tt uses a unique representation of the  coupling 
between torsional  and  transverse  displacement  to  derive a single-degree-of-freedom  analogy of 
the  system. While some of the  assumptions  made  must  be  termed  gross  simplifications of the 
problem,  the  treatment is a perfect  example of  how sound  engineering  judgment  can  be  incorporated 

'GSFC Memo 732-46, H. P.  Frisch to H .  C. Hoffman,  Aug. 18,  1967, "Transfer  Function,  Tip  Deflection and Root Bending  Stress  of 

tGSFC Memo 732-56, H. P .  Frisch to H .  C. Hoffman, Aug. 29,  1967, "Thermally  Induced  Vibrations  of  the OGO-D  Boom With Inference 

'J. H. Donohue and H. P.  Frisch,  "Thetmoelastic  Instability of Open Section  Booms,"  Symposium on Gravity  Gradient  Attitude Con- 

SH. P .  Frisch,  "Thermally  Induced  Vibrations of Long  Thin Walled Cylinders of Open  Section," ASME/AIAA  10th Structures, Structural 

"J. Donohue, H. Hoffman, H. Price, B.  Zimmerman,  and G. Banks. 

OGO-D  Boom A s  Derived from Flexible  Body  Analysis." 

to AT'S." 

trol, Dec. 3-5,  1968, Los Angeles,   Calif .  ALSO, NASA Technical  Note Th' D5310 ,  Dec. 1969. 

Dynamics and Materials  Conference,  April 14-16,  1969, New  Orleans,  La. 

**GSFC Memo, Sept. 1, 1967, G. F. Banks to R. J .  Darcey, "Boom Flutter  Due to Thermal  Lag." 
tfGSFC Memo 732-194, J.  H. Donohue to H. C. Hoffman, "Preliminary  Review of Lumped Parameter  Simulation  of OGO Thermally In- 

duced Boom Oscillations,"  Feb. 29,  1968. 
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into a simple  model  to  yield  useful  and  reasonably  accurate  answers  to an extremely  complex 
problem. 

Unknown to GSFC at the  time, G. Augusti at the  University of Naples  simultaneously  initiated 
an investigation  into  the  stability of elastic  structures loaded by non-conservative  forces,  namely, 
radiant heat.* The  problem  solved by Augusti  was  virtually the same as that solved by Banks. 
Both investigators  arrived at the  same  basic conclusions. 

Subsequent  to  the  initial  work  done by NASA/GSFC, Y. Y. Yut made  use of G. Banks' original 
idea and  extended it to the  continuous-beam  case. H i s  results,  however, are 180" out of phase  with 
the  results obtained from  the  single-degree-of-freedom  analogies  presented by Banks and  Augusti. 
The  present  author  believes  that the results of the  single-degree-of-freedom  analogy are correct 
and  that  the  results of the  continuous-beam analysis should  be  closely  approximated by i ts  lumped- 
parameter ana1ogy.f 

The  work  to be presented  herein  derives the equations  which  define  the  dynamic  response 
of a clamped-free  thin-walled  cylinder in a solar  thermal  field.  The  equations  are  specialized 
to  the  case of a cylinder of open section;  however,  modifications can be introduced which en- 
able one  to  study  cylinders of closed  section.  Cylinders of zippered  section,  that is, cylinders of 
open  section which  have had their  seams  literally  zippered,  also can be studied by the proper  adjust- 
ment of the  torsional  stiffness  parameters and by the  introduction of a reasonable  thermal model. 

While it is recognized  that  the  simplifying  assumptions  to be introduced will  prevent  describ- 
ing  the  dynamic  response of the boom exactly,  it  must be emphasized  that  the  purpose of this 
analysis is to  define  the  basic  cause of the  observed  oscillations  and  to  obtain  an  approximate  esti- 
mate of its steady  state  amplitude.  Furthermore,  considerable  scatter  in  experimentally  determined 
values of stiffness, damping,  and  thermal  characteristics  imply  that  there is no point  in  an overly 
refined  analysis. 

The  results obtained by numerical  solution of the  derived  equations show that  the  postulated 
theory5 (if accepted)  leads  to  conclusions which are consistent  with  observed  phenomena. 

The  question of the validity of the  theory of thermally-induced  vibration as proposed by  God- 
dard  Space  Flight  Center  to  explain  this  phenomena (and presented  herein) was the  subject of a 
session at the Symposium  on  Gravity  Gradient  Attitude  Control  sponsored by the Air Force  and 
Aerospace  Corporation  in  December 1968. It  was  the  general  conclusion at the symposium  that 
this theory is valid  and  does  indeed  define  the  cause of the  anomalous  motion  observed on OGO IV 
and  other satellites deploying  long  flexible cylinders of open section. 

*G.  Augusti,  "Instability of Struts  Subject to Radiant  Heat," 12th International  Congress of Applied  Mechanics, Stanford University, 

tY. Y. Yu, "Thermally  Induced  Vibration  and  Flutter of  a Flexible  Boom," AIAA 7th  Aerospace  Science  Meeting,  NewYork,  Jan.  20-22,  1969. 

*See  forthcoming  technical  comments by Jordan  and  Augusti  in  journal o/ Spacecralt and RocLefs. 
~ G S F C  Memo 732-56, H. P. Frisch to €4. C. Hoffman, Aug. 29,  1967,  "Thermally  Induced  Vibrations of the OGO-D Beam  with  Inference to ATS." 

Aug.  .26-31,  1968;  in Meccanica, No.  3,  1368. 

Also,  Journal  of  Spacecraft and Rockets, Aug. 1969. 
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Mathematical  Model  and  Outline o f  Solution 

The  model  which is assumed  to  adequately  describe  the boom is a long, uniform,  continuous, 
thin-walled  cylinder of open cross-section. It is assumed to  be  clamped at one  end  both in two- 
axis bending  and in  torsion,  The  other end is free  to  warp  and  deflect  and  has  attached  to it a tip 
weight  which has both translational  and  rotational  inertia.  The  effect of the  shear  center axis being 
displaced  from  the  centroidal axis is assumed  to be  negligible,  and  the  bending  stiffness  about  any 
axis  passing  through  the  centroid of the  cross-section is assumed  to  be constant. 

The  system is assumed  to  be  free of all disturbances  except  those  arising  from  the transla- 
tional  and  torsional  motion of the  cylinder  relative  to  an  inertially  fixed  coordinate  system,  those 
arising  from  viscoelastic  damping both in  two-axis  transverse bending  and  in torsion, and those 
arising  from  the  continual  attempts of the  cylinder  to  relieve its state of thermal  stress by bending 
and  twisting  toward a position of thermal  equilibrium. 

The  response of the  cylinder  to a time-varying  non-uniform  thermal  stress  distribution is as- 
certained by applying  the  techniques of elementary  strength of materials.  This  approach is justi- 
fied by Boley in  Reference 2 (Chapter 10). 

Accordingly,  the  Timoshenko  theory of bending  and torsion of thin-walled members of open 
section as expounded in  References 3 and 4 is directly  applied.  That is, for  small-angle  bending 
and  torsion  the  equations are  separable and  can be solved  independently.  Furthermore,  the s t r e s s  
couples  that  produce  pure bending are  proportional  to  curvature,  and  the  stress couple  that pro- 
duces  pure  torsion is countered by the  resistance of the  cylinder  to both torsion  and  warping. 

The  equations of vibration are derived by making  use of two coordinate  systems; one is fixed 
at  the  clamped end  and the  other  slides with constant ra te  along  the boom. The  use of vector  tech- 
niques as discussed by Landau  and  Lifshitz  (Reference 5) and A. E. H. Love (Reference 6) makes 
it  possible to derive  these  equations  relative to  the  sliding  coordinate  system. 

When long rods  are  to  be  studied,  special  consideration  must  be given to.the  development of 
the  equations  that  define  the  forces  associated  with  the  kinetic  reactions of accelerating  mass  ele- 
ments.  Since  the  antennas  under  study  may be of arbitrary  length, and non-planar  transverse  mo- 
tion is assumed  to  occur,  the  deflected  shape of the boom at each  instant of time  must  be  considered 
when such  forces  are computed. From  the computation it is seen that significant coupling exists be- 
tween translational and torsional motion, This coupling  defines,  for  relatively long booms,  the 
principal  mechanism by which transverse  and  torsional motion a r e  coupled  together. For booms 
of short length,  however,  this  effect  becomes of decreasing  importance  compared  to  such  neglected 
effects as the shear  center  being  offset  from  the  centroid and  the  non-symmetry of the  cross-section. 

With torsional motion  existing in a solar  thermal  field,  there  will be a continuous  change in  the 
flow of heat  around  the  perimeter of the boom. The   ra te   a t  which heat will flow from the  illuminated 
side to  the  dark  side is governed by the  thermal  time  constants of the boom. The  overall  temperature 
distribution  and  hence  the  thermal  loading is theref0re.a  non-linear function of the  boom's torsional 
response  and its thermal  time  constants. 
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It is assumed that there is zero heat flow along  the  length of 
around  the  perimeter is describable by the standard equation for 

the boom  and that the heat flow 
heat conduction  and radiation  in 

a one-dimensional  solid.  Heat is assumed  to  be  radiated  uniformly  around  the  entire  perimeter, 
and  to  be  absorbed  only on the  sunlit  side  according  to a cosine law. By solving  the  thermodynamic 
equation at a sufficient  number of thermal  stations  along  the  length of the boom, an accurate  de- 
scription of the  overall  temperature  distribution, and hence  the  thermal loading, is obtainable. 

The  three  equations  that define the motion of the  cylinder  in  the  transverse  and  torsional di- 
rections  and  the  thermodynamic equation  that is defined at  each  thermal  station are partial  differ- 
ential  equations of the  type  which  may  have their  solutions  expressed  in  terms of orthogonal  func- 
tions.  That is, the  solutions  to  the  vibration  equations are  expressed in terms of their normal 
modes of vibration  and  the  corresponding  generalized  displacement  coordinates;  similarly,  the 
solutions  to the thermodynamic  equations are  expressed  in  terms of the  normalized  thermal  modes 
and  the  corresponding  generalized  thermal  coordinates. 

The  actual  solutions  to  be  presented are obtained by numerically  solving  simultaneously the 
equations which  define  the  generalized  displacement and thermal  coordinates  associated with the 
most  significant  vibration and thermal  modes.  The  solutions show that  the  theoretically  predicted 
amplitudes of the  antennas on OGO Iv and OGO V are  consistent with those  observed  from  actual 
flight  data. 

Solutions a r e  included  that show how variations  in  various  significant and  controllable  param- 
eters  can  affect  the  steady  state  amplitude of the  thermally-induced  vibrations.  From  these  solu- 
tions it becomes  evident that the  problem of thermally-induced  vibrations  can  be  eliminated by in- 
creasing the torsional  rigidity of the boom by  two to  three  orders of ma-pitude. This  improvement 
can and has  been  made by various  manufacturers by zippering  the  seams of the  open-section 
cylinder. 

Both RAE, launched  September  1968,  and OGO-VI, launched  June 1969,  have torsionally  rigid 
booms. As predicted,  the  four 750-foot booms on RAE and the two 30-foot  booms on  OGO-VI a re  
stable. 

THE  THERMODYNAMIC  MODEL 

The accurate  prediction of whether o r  not  thermally-induced  vibrations  can  be  excited  depends 
upon the  thermal  model  used to describe the thermal loading.  The  model to be  used  must be capable 
of taking  into  account  large-angle  torsional  motion of the boom relative to a fixed sun  line. It must 
also be capable of taking  into  account  the  thermal  properties of the boom material, which cause 
heat  to flow at a finite  rate. 

The  development of the thermal  model  to  be  used  will be based upon the fundamental  hypothesis 
governing the conduction of heat  in  solids as discussed by Carslaw and Jaeger  in  Reference 7. 
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Since  the  amount of twist  per  unit  length is restricted to small  values by the assumptions of 
linear  elasticity,  and  since  the  temperature  gradients  across  and  along  the boom are small  compared 
to its mean  temperature, the assumption  that  zero  heat is conducted  along  the  length of the  boom 
can  be  made  and  the  equation  linearized. It i s  thus  possible  to  determine  the  entire  temperature 
profile by solving  the  one-dimensional  equation of heat  conduction  and  radiation a t  a sufficient  num- 
ber of thermal  stations  along  the boom length. The  thermal  profile between each  thermal  station 
is easily  determined by linear o r  higher-order  interpolation  techniques. 

The  question  to  be  answered  before  this method is used  to  describe  the  thermal  loading is 
whether  or  not  the  detail it  provides is necessary. To answer  this the thermal  response of a unit 
boom element is studied when it  is made to oscillate  at  predefined  rates and  amplitudes in a solar 
thermal  field.  The  results show clearly  that  it would be  very  difficult  to  construct  and  justify a 
reasonably  simple  model  approximating  the  complete  thermal  profile  for  arbitrary  torsional  motion. 

Accordingly,  the  equation  describing  the  temperature  change  around a unit element of boom 
length is derived  for  arbitrary  rotational motion of the sun  relative to  the  cross-sectional  principal 
axes of inertia. Once this equation has been  obtained, i t  is a simple  matter  to: 

1. Study the  thermal  response  due to a predefined  sun  motion. 

2. Study the  thermal  response  at any thermal  station along  the  boom. 

By defining a thermodynamic  equation  at  each  thermal  station  and by solving  each  simultane- 
ously with  the vibration  equations so that  the sun's relative  orientation  can be  continually  updated, 
i t  is possible  to  obtain a continuous  and accurate  record of the  thermal loading. This  information 
can  in  turn be used  in  the  vibration  equations  to  update  the  effective  forcing  function  due to thermal 
loading. 

Thermodynamic  Equation o f  Heat  Conduction  and  Radiation 

Figure 2 depicts  the  type of thin-walled  cylinder of open section which is studied in this  re- 
port. It has  arbitrary length  and radius,  its  wall  thickness  must be definable as thin  (i.e., i t  can- 
not  support a thermal  gradient),  and  the  angular  amount of overlap  should be not less than 0" nor 
greater than 180". 

The  assumptions upon which the  thermodynamic  equation of heat conduction  and radiation is 
based  are  identical with those  set down in  Reference 1 and  used  to  study  static  thermal bending 
plus  twist of long  thin-walled  cylinders of open  section.  These  assumptions  are: 

1. Heat is conducted  only  in a circumferential  direction  around  the  entire  perimeter. 

2. The  entire  cross-section  loses  heat by radiation. 

3 .  The  heat  absorbed  at a point on the  sunlit  side of the boom element is proportional  to  the 
cosine of the  angle  between  the  surface  normal  and  the  sun  line. 
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4. Heat transfer  across the interior of the 
cylinder is assumed  to be negligible; how- 
ever, heat transfer  from  the  overlapping 
surface to  the  overlapped  surface is ap- 
proximated by a radiation  term  because no 
smooth  flush  contact exists between  the 
surfaces. 

While slight  differences  exist between these 
assumptions,  especially  in  the  treatment of the 
overlap  region,and  those  used by Florio and Hobbs 
(Reference 8) for  their  analytic  model, both anal- 
yses  lead  to  results that a r e  consistent  with  ex- Figure  2-Thin-walled  cylinder of open  section 

perimental findings  and  with each  other. 

1 

(a typical boom segment). 

It  follows from  the  fundamental  hypothesis  for  the  mathematical  theory of conduction of heat 
in  solids  (Reference 7) that, if there is no  heat  generated within or  radiated away,  the  differential 
equation that defines  the  heat flow around a unit  length of the boom shown in Figure 2 is 

where  the  conditions at the  boundaries are 

and the  symbols used a r e  defined as: 

KT = thermal conductivity,  Btu/(sec-in.-OF) 

h = cylinder  wall  thickness,  in. 

P = weight density of material,  1bs/ino3 

c = specific  heat of material, Btu/(lb-OF) 

s = a r c  length  measured  from  outer to  inner  seam  around  the  cross-section, in. 
P = total  perimeter of cross-section, in. 

z = coordinate  used  to  measure  arc length  along  longitudinal axis of boom,  in. 

t = coordinate  used  to  measure  time,  sec 

?( s ,  z, t ) = absolute  temperature  at  the  position s ,  z at time t , OR. 

If it is assumed  that  the boom radiates as a black body and  that  the  heat  input  can  be  defined 
by the function T( s ,  z ,  t ) then the thermodynamic  equation of heat conduction and radiation is 



given by 

where 

0 = Stefan-Boltzmann  constant, 
Btu/(sec-in.2 -OF '), 

E = emissivity, 

T( s ,  z .  t ) = heat  input a t  position ( s ,  Z )  and 

- 
n ( 5 )  

at  time t ,  Btu/(sec-in.2). 

The  heat  input  function T( s ,  z ,  t )  can be 
written as a function of the  sun's  orientation 

I relative to the  cross-sectional  principal  axes 

, I I of inertia. Using Figure 3 as a guide, we let 
- 
SL(z ,  t ) = unit  vector  emanating  from  the 

geocenter of the  cross-section 
to  the sun's relative  position  at 
( 2 9  t ) %  

G ( s )  = unit  vector  normal to the surface 
of the boom at position s 

Figure 3"Boorn cross-section at station z. 
- 

i f  SL(Z .  t )  . G ( s )  > o 

i f  SL(Z .  t ) .  Ti (s )<  o 
E ( s .  2 .  t )  .z + (4 ) 

(this function is used  to  distinguish  mathematically  between  the  sunlit  and  shaded  sides of the  boom), 

J ,  = solar  radiation  intensity,  Btu/(sec-in.2), 

3 ,  = surface  absorptivity, 

r = radius of cylinder,  in., 

and define  the  heat  input  function by the  expression 

o s = . ( s ,  z .  t ) S L ( z .  t ) .  n ( s )  for  O ( s ( 2 n r  

for 2nr ( s 5 P 

- - 
(5) 

This function is 
yields  results which 

analogous  to  that  used  in  Reference 1 to  study  static  thermal  deflection, and 
are  consistent with  the  experimentally  obtained  data  reported  in  Reference 8. 



Making use of the  fact  that the maximum  temperature  difference  between  any two points on 
the boom surface  for  any  sun  orientation is small  compared to  the  steady  state  mean  temperature, 
the  thermodynamic  equation of heat  conduction  and  radiation  (Equation 3)  can  be  linearized.  Let 

where 

T o  = steady  state  mean  temperature of cross-section, OR, 

T( s ,  Z ,  t ) = temperature  deviation  from TO, OR, 

and  express T4 ( s ,  z ,  t ) as a truncated  binomial  series  expansion  about To. A direct  substitution of 

z 

T4 ( s ,  z ,  t )  ? T: + 4T:T(s, z, t )  

and  Equation 6 into  Equation 3 leads  to  the  one-dimensional  linearized  thermodynamic  equation of 
heat  conduction  and  radiation  along  with its appropriate boundary  conditions.  That is, 

d 2   T ( s ,  z ,  t )  - pc d T ( s ,  z ,  t )  4mT; 
~ , h  T(S. Z .  t )  = T: - - T(S .  2. t )  , 

DE 1 
d s 2  K T  d t  K T  

where 

This equation  can be solved for arbitrary  sun motion by expressing  the  solution  in  terms of 
the  orthogonal  functions which satisfy its homogeneous part  and  their  associated  generalized 
coordinates. 

By defining =( z , t ) to be a function of the  torsional  motion of the boom at thermal  station Z ,  

a time  history of the  thermal  loading  at z can be obtained.  To  determine  the  thermal  loading  along 
the  entire  length of the boom, z( z ,  t ) must be  defined,  and  the  thermodynamic  equation  must be 
solved, at a sufficient  number of thermal  stations to  obtain a piecewise  continuous  description of it. 

Solut ion  to  l inearized  Thermodynamic  Equat ion 

The  linearized  thermodynamic  equation 

d 2 T ( s ,  z ,  t )  -pc d T ( s ,  z ,  t )  
d s 2  KT d t  

of heat conduction and  radiation, 

(7) 
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may  have its solution  expressed in terms of the  orthogonal  functions  that are solutions  to its homo- 
geneous part  and  that  satisfy  the  stated  boundary  conditions 

The  orthogonal  functions  that  satisfy  the  homogeneous  equation 

may be obtained by separation of variables. If a solution of the  form 

T ( s .  z ,  t )  = e - h t T ( s )  

is assumed  and  substituted  into  Equation 9, a standard-type  eigenvalue  problem is obtained.  That 
is, the  function T( s ) must be a solution  to  the  equation 

and satisfy the  boundary  conditions 

where 

fl; = “- 
K T h   K T  

h . 

For a non-trivial  solution  to  Equation 11 to  exist,  it  can  be shown, by substituting  its  general 
solution 

T ( s )  = D, eRTS + D, e 
- f l . , S  

into  the  boundary  condition  equations,  that 0, must  be a solution  to  the  characteristic  equation 

- = o  

10 



and  that the integration  constants Dl and D, must  satisfy  the  relation 

D l -  D, = 0 .  (16) 

It is easily  seen  that  the  characteristic equation, (15), is satisfied  for all values of nT given by 

while the  eigenvector 

associated with  the  eigenvalue nn is a solution to the  equation 

and satisfies  the boundary  conditions 

The  constants of integration Dl,, are   a rb i t ra ry ,  but  can be made  unique by requiring  the  eigen- 
vectors to satisfy  the  orthogonality  relationship 

where 

r 

One is thus  led  to  the  expression 



These  eigenvectors,  referred  to as the "thermal  modes" of the system,  define  the set of orthogonal 
functions  which  will  be  used  to  solve  the  non-homogeneous  equation  (Equation 7). 

The  values of X that  satisfy both  Equations 13 and  17 are given by 

and are referred to as the  "thermal  decay  constants."  The  quantities defined by 

are   re fe r red  to as the  "thermal  time  constants" and  define  the time  it  takes  the  nth  thermal mode 
to  decay 63.21% in  the  absence of thermal input. 

These functions  and  relationships  developed  with  respect  to  the  homogeneous  equation, (9), 
can  be  used as a basis  for  solving  the non-homogeneous  equation of heat  conduction  and radiation, 
(7 ) .  

Assume a solution to Equation 7 of the  form 

I,' 0 

where 

q,  ( z ,  t ) the  time-dependent  generalized  thermal  coordinate at thermal  station and time t 

associated with the  nth thermal mode Tn ( s  ). 

By directly  substituting  the  assumed  solution  into  the  non-homogeneous  equation, (7 ) ,  and by mak- 
ing  use of the  functional  relationships given by Equations 13 and 19, an  infinite  series  representa- 
tion of Equation 7 can  be  obtained.  That is, 

Since  the  thermal  modes Tn ( s )  a r e  orthogonal  functions  and are  normalized  according to Equa- 
tion 21, Equation 27 can  be  decoupled to obtain a se t  of linearly independent  equations  that  define 
the  generalized  thermal  coordinates.  These  equations  are  derived by multiplying both sides of 
Equation 27 by Tm ( s )  and  integrating  around  the  cross-section.  The  resulting  equations for 
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n = 0,1,2;-- are:  

where  the  "generalized  thermal  input" Q, ( z , t ) is defined by 

Generalized  Thermal  Input 

The  generalized  thermal  input Q, ( Z ,  t ) associated with the n t h  generalized  thermal  coordinate 
9, ( z, t ) was defined  in  the  previous  section by the equation 

The  heat  input T( s ,  z ,  t ) was assumed  to  be  adequately  described by the  equation 

J ~ ~ . ~ = ( S ,  - z ,  t)sL(z. t )  . z ( s )  f o r  0 z s c 2 n r  

7 4  ( s  - 2 n r .  z .  t )  for  2 n r  < s (P 
T(s. z ,  t )  = (5) 

where  the  sun-line  vector z( Z ,  t ) is an arb i t ra ry  but definable  function of time at any particular 
thermal  station z along the boom. 

Figure 4, showing  the  position of the sun-line  vector g ( z ,  t) relative  to  the  principal  cross- 
sectional axes of inertia at the  thermal  station z ,  makes  use of the following  symbols: 

4 = angular  amount of overlap 

y-axis = cross-sectional  principal axis of inertia  parallel  to  the axis of symmetry and directed 
away from the overlap area 

x-axis = cross-sectional  principal axis of inertia  normal  to  the Y - a x i s  and passing  through the 
centroid of the cross-section,  directed  in  the  direction shown 

$( 2 ,  t ) = angle  between  the  negative Y-axis and  the  sun-line  vector at thermal  station  and 
time t . $( Z ,  t ) is measured  positive in the direction of increasing S .  
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From  these  definitions  and  the  geometrical 
relationships shown in Figure 4 it can  be  seen 
that 

- 

- 
SL(Z, t) . i i ( ~ )  = C O S  b ( z ,  t)- $ +  4 , (30) - c 

d 5 )  

and  thus  Equation (5) may be rewritten as 
- X  

/ 

Figure 4-Orientation of boom cross-section 
at  station z relative  to sun. 

E ( s ,  2 ,  t )  = r" 
By introducing  the following definitions, 

I 
where 

for  2 n r  : s 'P 

B l n ( z ,  t )  = 

= %. Tn ( s )  ds  , 

(33) 

(34) 
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the  generalized  thermal  input Q, ( 2 .  t ) may  be  rewritten as 

By recalling  that 

one sees  that To  E,, is proportional  to  the  heat that would be  radiated by the  overlap i f  the  entire 
overlap had a uniform  constant  temperature  equal  to  the  mean To,  and that 

is a correction  factor which accounts  for  the  actual  non-uniformity of the  temperature  distribution. 
Since  the  mean To is two orders of magnitude  greater  than  the  maximum  temperature  deviation 
from T o ,  one  may  write 

The  generalized  thermal input is thus  independent of all generalized  thermal  coordinates and can 
be expressed as 

and it  will be shown that B , , ( z , t ) can  be  written as an analytic  function of $( z , t ) . 
It is therefore  possible  to  arrive at an  analytic  expression  that  defines  the  quantity Q, ( z ,  t ) for 

an arbitrary  piecewise continuous  function of the  angle 4J( z .  t )  . 
It is recalled that $( z, t) is the  angle  between the sun line and the  cross-sectional axis of sym- 

metry and hence is directly  proportional to  the  magnitude of the  torsional  oscillation  at  thermal  sta- 
tion z and  time t .  

By defining 4J( z ,  t ) to  be a particular function of time, the thermal  response of a unit  element 
of boom length  oscillating,  relative  to a fixed sun, about its longitudinal axis can be  determined. By 
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defining +( Z, t ) to  be  proportional  to  the  torsional  oscillation of the  vibrating  boom,  the  thermal 
loading at thermal  station z can  be  determined as a function of time. 

In addition  to  the  above  expression  which  defines  the  generalized  thermal  input Q, ( z ,  t ), i t  
will  be shown that,  in  order  to  arrive at the  expressions  which  define  the  thermal  loading  com- 
pletely,  the  derivative of Q, ( z ,  t ) with respect to  the  sun  angle $( z, t ) must  also  be  determined. 
That is, 

d $ ( z ,  t >  

is defined so that  the  equation 

(to  be  derived 

Recalling 

enables  one  to 

subsequently)  can  be  solved. 

that  the  thermal  mode  shape 

T , ( S )  = 

T, ( s )  is given by 

f o r  n = 0 

Lfi.0. s for n = 1, 2 ,  3 ,  

evaluate  the  integral  equations  defining 

as analytic  functions  of $( z ,  t ) . A summary of these  expressions  follows: 

B,, = P 

B,, = 0 n = 1 ,  2 ,  

E, ,  = r &  

E,,  = - - f i ~  2nv2 r 
n.rr s i n  p n = 1, 2 ,  . - . .  (45) 
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For n = 1,  2, - - a ; 4 2 0 ;  n / 2 - 4 / 2 5 + ( z S   t ) ( 3 n / 2  - 4/2; with the  exception of n = 2 for 4 = 0: 

For n = 1, 2, - - - ; 6 2 0; 3 n / 2  - 6 / 2  < +( z ,  t ) 5 2n - $/2; with the  exception of n = 2 for 6 = 0: 

- s i n  [+(z, t ) +  4 cos p- 2nn2 r 

nn r 
- p s i n  p n" r 
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Thermal  Loading  Associated  With  Non-Uniform  Temperature  Distribution 

Since all booms of practical  interest  are  made of materials  that  have  finite  coefficients of 
thermal expansion, a non-uniform  temperature  distribution  around  and  along  the boom will give 
rise to a non-uniform  thermal stress distribution. This condition  the boom will  attempt to relieve 
by bending  and  twisting to a position of static  thermal  equilibrium. I 

As previously  stated,  the  deflection  analysis of beams  subjected  to  ihermal  loading is per- 
formed on  the basis of elementary  strength of materials  theory.  From this basis it is shown  in 
References 1 and 2 that  the  thermal  loading  may  be  adequately  described by a resultant  thermal 
bending  moment  distribution that produces  pure  bending  and a resultant  thermal  torque  distribution 
that  produces  pure  torsion. 

Both  the  thermal  bending  moment  and  the  thermal  torque  at  any  thermal  station z can  be  de- 
fined in terms of the  generalized  thermal  coordinates.  The  corresponding  distributions  can  be 
obtained by numerically  differentiating  with  respect  to z . 

It was shown  that  the  solution  to  the  thermodynamic  equation of heat  conduction and radiation 

was given by Equation  6  combined  with 26: 

where  the  generalized  thermal  coordinates qn ( z ,  t )  can be obtained by solving  the  ordinary  differ- 
ential equation 

The  magnitude of To was not  specified, but To was  defined  to  be  the steady  state  mean  tempera- 
ture of the  cross-section.  Its  magnitude  can  therefore be derived  from  the  expression 

Since 

(49) 

19 



and 

it follows that 

In Reference 1 and in Appendix A it is shown that the thermal bending  moment  components a t  
thermal  station z about  the  local  cross-sectional  principal axes of iner t ia   are  given by 

P 

B M , ( z ,  t )  = e c E h  lo ? ( s ,  z ,  t ) y c ( s ) d s  

and that the  thermal  torque  about  an axis normal  to  the  cross-sectional  plane at thermal  station 
is given by 

where 

BM,: ( Z ,  t )  = component of the  thermal bending  moment  vector  in  the  X-direction,  i.e.  normal 
to  the axis of symmetry (see Figure 4),  

BMy ( Z ,  t )  = component of the  thermal bending  moment  vector  in  the  Y-direction,  i.e.  parallel 
to  the axis of symmetry  (see  Figure 4), 

e c  = coefficient of thermal  expansion, 

E = Young's modulus of elasticity, 

x c  ( s )  = distance of the point s on  the  cross-section to  the Y - a x i s ;  
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S c  = distance between  the  centroid  and  the  geometrical  center of the  cross-section; 

(P( z ,  t )  = angular amount  the  cross-section at thermal  station z has  rotated at time t from 
its  zero position, 

V ( z ,  t )  = [ e s s i n T  f -  ? ( s ,  z ,  t ) d s  ' 

@ ;I JOP 

e s  = distance between the shear  center and the  geometrical  center of the  cross-section; 

(59) 

A direct  substitution of Equation 46 into  Equations 52, 53, and 54 leads  to the  equations which 
define  the bending moment  components  and  the  thermal  torque as infinite series. That is, 
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where 

By introducing  the  definition of the  thermal  mode  shape Tn ( s )  given by Equation 23 and carry- 
ing  out  the  obvious  integrations,  one is led  to  the following: 

n e v e n  

BMy ( z ,  t )  = - 2 f i e c E h r 2  P'cos Gz q n  ( Z '  t )  

( n n r ) 2  -P* 
n=  1 

n odd 

It is thus  possible  to  obtain  infinite series expressions  for  the  thermal bending  moment  com- 
.ponents a d  the  thermal  torque  in  terms of the  generalized  thermal  coordinates which  can  be readily 
obtained at every  thermal  station. 

Special  note is made of the fact that these  quantities are derived  relative  to  the  principal  cross- 
sectional axes of inertia at thermal  station Z .  

Thermal  Response o f  Unit   Boom  length  to  Predef ined  Torsional   Osci l lat ion 

Before an attempt is made  to  define  the  thermal  loading  along  the  entire  length of the boom and 
include this thermal loading in  the  vibration  equation, a prerequisite  study will  be  made. 

Two fundamental  points  must  be  studied.  That is, we must first determine  the  number of 
thermal  modes  needed to adequately  define  the  thermal  loading,  and  must  then  show  that  the  thermal 
model as defined  does  indeed  predict a physically  realizable  representation of it. 

With regard to the first point, it suffices  to  state  that by comparing  results obtained  using 2, 
4, 6, and 20 thermal  modes (excluding the n = 0 mode) it has  been found that  the  use of 4 modes is 
optimum  from  the  standpoints of accuracy and computer  running  time. 

The  second  point is studied by investigating  the  change  in  the  thermal  load on a unit  element 
of boom length  due  to a predefined  change  in  the sun position with time. 

The  nominal  parameters  used to define  the  geometric  and  physical  properties of the boom ele- 
ment are all obtained from  the  extensive  experimental  work  carried on at  NASA/GSFC on booms of 
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Table 1 
. . . . . . . . . -. . .  - ~~ 

Antenna material = beryllium  copper,  silver-plated 

Perimeter of cross-section = P = 2 in. 

Total  overlap  angle = 4 = 90 deg. 

Wall  thickness = h = .002 in. 

Weight density of material = P = .2714  lb/in.' 

Young's modulus = E = .19 X l o 8  lb/in.2 

Thermal conductivity = KT = 4.167  Btu/(hr-in.-OF) 

Specific  heat = c = .1 Btu/(lb-"F) 

Solar  radiation  intensity = J,  = 3.065 Btu/(hr-in.2) 

Thermal  expansion  coefficient = e c  = .lo4 x in./(in.-"F) 

Emissivity = E  = .035 

Absorptivity = as = .13 
"~ ~ "" 

flight  quality.  These  parameters  are  listed in 
Table 1. 

The  hypothetical  case of a spinning sun is 
studied  in  Figure 5. The  curves  labeled A, B, 
and C correspond to the  particular  cases  de- 
fined by 

$(2. t )  = .os t 

~ J ( z .  t )  = 5 . 0  t ( r a d i a n s )  

respectively.  The  change  in  the  thermal  load is 
illustrated by plotting  the  components of the ef- 
fective  thermal bending  moment  vector (BMx vs 
BMy as defined by Equations 64, 65) after a 
steady  state  response  has been  achieved. 

. 4  lb- in2 

BM Y 

A. * ( z , t ) =  0.05t 
B.  J , ( z , t ) =  0.5 
C.lb ( z , t ) = 5 . 0 t  

As expected,  for  the  slow-spin  case  the Figure  5-Variation i n  thermal  bending moment for 

thermal  model  does  yield  results  consistent 
with  those  obtained in the  static  analysis.  This 
fact may  be  verified by comparing  curve A with its analogous  counterpart  in  Reference 1. As  spin 
rate  increases, a temperature-averaging  or "barbecuing"  effect is to  be  expected  and is evidenced 
by curves B and C. The  offset point  about  which the  three  curves  appear  to  be  centered is a result 
of the fact  that  the  overlapped  portion of the  cylinder is never  exposed  to  direct  radiation. 

three  spinning sun  cases. 

23 



Figures 6 through 14 are included  to  demonstrate  the  need  for a rather  detailed  thermal  model 
in this analysis. 

In the  actual  problem,  the boom oscillates  torsionally  in  the  directional  thermal  field.  To  study 
the  steady  state  thermal  response of a torsionally  oscillating  unit  element,  the  sun's  relative  orien- 
tation is described by 

+(z, t )  = $ * s i n ( w ' t  - G o )  ( rad ians )  

for  particular  values of +*,  w*, and G o .  

As in Figure 5, each  curve  corresponds to  the  motion of the  tip of the  effective  thermal bend- 
ing  moment  vector  after a steady  state  thermal  response has been  achieved. 

On all figures from 6 through  14,  the  curves  labeled A, B, C, and D correspond to Go = 0, .1/2, 
7 ,  and 3n/2 respectively. 

Table 2 lists  the  respective  magnitudes of ( I *  and $* used  in  each  figure. 

c / I' 

- .4  Ib-in2 . 4  Ib-in2 

BM V 

A, $J ( z, t ) = "/4 sin (.05t - 0 )  
8.  $J ( z ,  t ) = r/4 sin (.05t - "/2) 
C.$J (z , t )=  n/4sin (.05t - T )  
D.$J (z,t  ) = "/4 sin (.05t - 3n/2) 

A. I / ) (  2, t ) = r/4 sin ( 0 . 5  t - 0)  
8 .  ,b(z t ) =  n/4 sin (O.5t - n/Z) 
c . $ J ( ~ : t ) = T / 4 s i n ( 0 . 5 t - ; r )  
~ . $ ( z , t ) = T / 4 s i n ( 0 . 5 t - 3 " / 2 )  

Figure 6-Variation i n  thermal  bending moment for . Figure 7-Variation i n  thermal  bending moment for 
oscillating sun  cases. oscillating sun  cases. 

24 

. I  
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Figure  8-Variation i n  thermal  bending moment for 
oscillating sun  cases. 

I I D  

A+ I 

I .4 Ib-in2 

Figure  10-Variation i n  thermal  bending moment for 
oscillating sun  cases. 

D 

.41b-in2 
A W X  

.4 Ib-in2 

A. $( z , t  ) = n/2 sin  (.05t - 0) 
B. J l ( z , t ) =  ",&'sin (.05t - "/2) 
C . $ ( z , t ) ' ~ / Z s i n ( . 0 5 t - ~ )  
D . + ( z , t ) = ~ / Z s i n ( . 0 5 t - 3 " / 2 )  

Figure 9"Variat ion  in thermal  bending moment for 
oscillating sun  cases. 

? 

- .4 Ib-in* 
' +BMx 

"B 

.4 Ib-in2 

V 

Figure  11-Variation i n  thermal  bending moment for 
oscillating sun  cases. 
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- B  

A 

t 4 ' b - i n 2  

1 
Y 

A . J / ( z , t )  =rrsin ( .05t -O)  
B. $(z,t) = a s i n  ( . 0 5 t - ~ / 2 )  
C.+!I(z,t) = x s i n  ( . 0 5 t - r )  
D. +!I(z,t) = a s i n  ( -05  t - 3 ~ / 2 )  

Figure  12-Variation i n  thermal  bending moment for 
oscillating sun  cases. 

1 Figure # 

I G 

7 

8 

Table 2 

W' (rad/sec) 

.05 

.50 

5.00 

.05 

.50 

5.00 

.05 

.50 

5.00 

.4 Ib- in2  
" B M  x 

t .4 I b - i n 2  

Y 

A. $(z , t )  = x s i n  (0 .5 t -0 )  
B. d ( z , t )  =rrsin ( 0 . 5 t - a / 2 )  
C. r/.(z,t) = x s i n  ( 0 . 5 t - a )  
D. fi ( z , t )  = x s i n  ( 0 . 5 t - 3 ~ / 2 )  

Figure  13-Variation i n  thermal  bending moment for 
oscillating sun  cases. 

.4  Ib-in2 
I 

B--A 
c B M X  

.4  Ib-in2 

Y 

A.$(z,t) = x s i n  ( 5 t - 0 )  
~ . + ( z , t )  = n s i n  ( 5 t - a / 2 )  
c . $ ( z , t )  = m i n  ( 5 t - T )  
D.+(z,t) = a s i n  ( 5 t - 3 ~ / 2 )  

Figure 14"Variat ion  in thermal  bending moment for 
oscillating sun  cases, 
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The  values of o* listed  bracket  the  frequency  range  in which nearly all booms of interest  will 
respond  torsionally. It is interesting  to  note  that  outside of this  frequency  range a much  simpler 
thermal  model could probably  be  justified. 

To intuitively  justify  the  results shown, one  must  determine  the magnitude of the  thermal  time 
constants r,,. For the parameters  listed  in  Table 1 these  values are 

-ro = 330.38 sec , 

r 1  = 9.236 sec , 

r 2  = 2.359 sec , 

r 3  = 1.052 sec , 

r 4  = ,593  sec. 

A few general  statements can  be  made  concerning  these  figures. 

1. The  effect of thermal  time  constants cannot  be  neglected in any analysis  for which vibra- 
tional  response  periods and thermal  time  constants  are of the same  order of magnitude. 

2. In any  particular  case of a torsionally  vibrating  cylinder of open section, the  amplitude of 
vibration  will  vary  from  station  to  station  along  the length. By comparing  Figures 6, 9, 12, 
Figures 7, 10,  13, and Figures 8, 11,  14, it is evident  that  the  thermal  loading  can be quite 
different  at  different  places  along  the length. A sufficient  number of thermal  stations along 
the length  will therefore have  to be used to describe the thermal  loading  accurately. 

Figures 5 through 14 deal  exclusively with the  effective  thermal bending moment  components 
BMx ( 2 ,  t ) and BMy ( 2 ,  t ). Figures 15 through 24 deal  exclusively with thermal  torque. To do so, we 

I e,Ehr 
A. J,(z,t) = 0.05t 
B. $(z,t) = 0.5t 
c. Q(Z,t) = 5t 

' e,Ehr dv A. Q (z,t) = 75/4 sin (0 .03  - 0) 
C. Q (z,t) = n/4 sin (0.05t - 75) 
D. Q (z,t) = 75/4 sin (0.05t - 3n/2)  

a +  B. ~ ( z , t )  = 75/4 sin (0.05t - n/2) 

Figure  15-Variation i n  thermal  torque coefficient for  Figure  16-Variation i n  thermal  torque coefficient  for 
spinning sun  cases. oscillating sun  cases. 
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e, Ehr $$ A. $(z,t) = r.4 sin (0.9 - 0) 
B. $(z,t) = ~ / 4  sin (0 .3  - ~ / 2 )  
c. $(z,t) = ;./4 sin (0.9 - B )  
D. g(z,t) = 7r/4 sin (0 .9  - 3"/2) 

0.2 Ib- in2 "-7 
B C 

I I 

oA c y D  

Figure 17-Variation i n  thermal  torque coefficient for 
oscillating sun  cases. 

e,Ehr A. $(z,t) = 7$/2 sin (0.03 - 0) 

c. $(z,t) = ~ / 2  sin (0.05t - x )  

D. $(z,t) = 7r/2 sin (0.03 - 37'2) 

a +  B. J,(z,t) = B/2 sin (0 .03 - B/2) 

Figure  19-Variation in  thermal  torque coefficient for 
oscillating sun  cases. 

0.2 I b - i n 2  B c 

D, Ehr * a+  

0.2 I b - i n 2  J i  

Figure  18-Variation i n  thermal  torque coefficient for 
osci I lating sun  cases. 

t 
:,Ehr a+ 

A. J, (z, t )  = '7'2 sin (0.9 - 0) 
B. J, (z,t) = x/2  sin (0.5t - B/2) 
C. J, (z,t) = "/2 sin ( 0 . 3  - n) 
D. JJ (z,t) = 7'2 sin ( 0 . 3  - 3=/2) 

Figure 20-Variation  in thermal  torque coefficient  for 
oscillating sun  cases. 

A. J, (z,t) = TT sin ( 0 . 0 3  - 0) 
B. @ (z, t )  = x s i n  (0.05t - x / 2 )  
C. J,(z,t) =  sin ( 0 . 0 3  - x )  
D. J, (z,t) = x sin ( 0 . 0 3  - 3r/2) 

Figure 21-Variation  in thermal  torque coefficient  for Figure 22-Variation i n  thermal  torque coefficient for 
oscillating sun  cases. oscillating sun  cases. 
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t 0.2 Ib-in2 A 
1 

D 
I 

C 
A. J,(z,t) = xsin (0.3 - 0 )  
B. J,(z,t) = r s i n  ( 0 . 3 -  ‘F/2) 
C. + ( z , t )  = xsin (0.3 - r r )  
D. J , ( z , t )  = x sin (0.3 - 35?/2) 

I a+ e,Ehr a 

0.2 Ib-in2 

A. Q ( z , t )  = n sin ( 5 t  - 0) 
B. Q (z,t) = n sin (5t - n/2) 
C.  J, ( r , t )  = nsin ( 5 t  - n )  
D. $ (z , t )  = nsin (5t  - 3n/2) 

Figure 23-Variation i n  thermal  torque coefficient for Figure 24-Variation i n  thermal  torque coefficient for 
oscillating sun  cases. oscillating sun  cases. 

is shown for the same  respective  functions of 3( z 1  t ) used  in  Figures  5  through 14. 

These  figures (15 through 24) are included  to  provide  the  reader with a graphic showing of how 
thermal  torque is dependent upon relative  sun  orientation.  These  figures will  play  an  important 
role  in  the  determination of whether  or not a thermally-induced  torsional  instability  can  be  excited 
for a particular  sun  orientation. 

The same  general  statements  made  previously  concerning  Figures  5  through 14 can  be  applied 
here  in  discussing Figures 15 through 24. Again the  reader is directed to Reference 1 for additional 
work  pertaining  to  the  static  analysis of thermal bending and twist. 

Preliminary  test data obtained by R. Predmore  and C. Staugaitis at NASA/GSFC indicate  that 
the  thermal  model  used  herein  does  tend  to  yield  results which are consistent with experimentally 
observed bending  and torsion.  More  testing is necessary,  however,  before any direct  comparison 
between  experiment and theory  can be made. 

E Q U A T I O N S  O F  B E N D I N G   A N D   T O R S I O N  

In order  for  the  results of this work  to  have  practical  significance, a certain  amount of general- 
i ty  must be reatined in developing  them so that they  may  be  applied  to  cylinders of open,  closed,  and 
zippered  cross-section  with only minor  adjustments of the  torsional  stiffness  parameters  and  the 
thermal model.  Since the actual  booms  used in flight are not  mathematically  perfect,  any  attempt  to 
describe  analytically the non-uniformities in such  parameters as bending stiffness,  cross-sectianal 
diameter,  shear  center  offset,  initial  curvature  frictional damping,  etc., leads to  equations  which are 
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and  specialized  to a particular  experimentally  studied boom. The  inclusion of these  details  tends 
to  mask  the  basic  mechanism  producing  thermally-induced  vibrations  behind a veil of second-order 
perturbations. It is argued  that, if the  simplified  model can be  shown  to  be  strongly  unstable, it 
would be virtually  impossible to  show  that  the  inclusion of second-order  terms  could  reverse  the 
situation  and  analytically  stabilize  the  system. 

Accordingly,  the boom is modeled as a beam  clamped in both two-axis bending  and torsion  at 
its  root.  The  tip is free  to  translate  and  rotate, and has  attached  to it a tip  weight  which has both 
translational  and  rotational  inertia.  The  tip weight is fixed to  the boom tip in a way which allows 
i t  to be free to warp. For the  long  booms of interest,  it is assumed  that  the  effect of the  shear 
center axis being  displaced  from  the  centroidal axis is negligible  and  that  the  bending  stiffness 
about any axis passing  through  the  centroid of the  cross-section is constant. 

The  determination of deflection  under  thermal  loading is performed  under  the  assumption  that 
the  longitudinal thermal  strain  in any fiber passing  through an arbitrary  cross-section  along  the 
length of the rod is a linear function of the distance  from  the  fiber to  the  neutral axis of the 
cross-section. 

Furthermore, the s t r e s s  couples  that  produce  pure  bending a r e  proportional to local  curvature, 
and  the s t r e s s  couple  that  produces  pure  torsion is a function of the resistance of the  cylinder  to 
both torsion and  warping. By varying  the  magnitudes of the  torsional  stiffness  parameters,  it is 
possible to show how the  response of the boom changes as the  torsional  stifhess is increased  from 
the  case of an open-section  cylinder  to  that of a closed-section  cylinder.  This  transition  region  in 
effect  simulates  the  torsional stiffness characteristics of zippered-section  cylinders. 

As indicated  in  the  Introduction, the small-angle  assumptions  made  are  valid  over any short  
segment of the  boom;  however, when extended over  very  long  lengths  they  do  not  completely  define 
the  situation.  It is thus  desirable to develop  the  equations of elastic  equilibrium  from  elementary 
considerations. 

This is done by using  vector  techniques  to  derive  the  equations of elastic  equilibrium  relative 
to a coordinate  system which slides along  the  longitudinal axis of the boom with  uniform  constant 
rate,  relative  to  an  inertially  fixed  system. 

The body forces  associated with  the  translational  and  rotational  acceleration of mass  elements 
along  the boom, the  dissipative  forces  associated with viscoelastic  damping, and the  thermal load- 
ing  induced by the  thermal  environment  can  also  be  expressed  in  vector  form  relative  to  either  the 
sliding  or  the  fixed  coordinate  system. 

These  equations  can, by means of the  transformation  matrix, be expressed  in a common  co- 
ordinate  system  and  reduced  to a manageable  form by the  deletion of terms  that are of second 
order  in  displacement. 
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Basic  Equations o f  Elastic  Equilibrium  in  Vector Form 

The  derivation of the  equations  herein is based upon the  work  presented by A. E. H. Love in 
Reference 6 and  Landau  and Lifshitz in Reference 5. Where  possible,  the  notation  used  will follow 
that  used by Love. 

Consider two adjacent  cross-sections  along  the  length of an  elastically  deformed  beam  that are 
a distance dz apart, as shown in  Figure 25. Suppose also  that  the beam i s  deformed by forces that 
are applied  along  the  length of the beam.  The  resultant  effect that these  forces have  on the  beam 
is estimated  from: 

1. @ their  resultant  force  distribution  measured  per unit length  along  the  longitudinal axis of 
the  beam,  and 

2. K' their resultant couple distribution  measured  per  unit length  along the  longitudinal axis of 
the  beam. 

For the  element shown in  Figure 25 to  be in  elastic  equilibrium,  an  internal  stress  distribution 
must  be  set up which will  have the  resultant  effect of exactly  counterbalancing  the  applied  resultant 
force and couple distributions. 

Figure 26 isolates  this  element  from  the 
rest of the  beam. Shown in  this  figure are: 

- v = resultant of the  internal  stress - r  I I .  I 

distribution on the  cross-section 
at 0 '  !* )-% - 

- 
7 + dv = resultant of the  internal  Stress - 

distribution  on  the  cross-section - - 
at 0. -V 

These are the  shear  forces  at 0' and 0 respec- 
tively;  similarly, 

Figure 25-Clamped free beam. 

- 
M = moment of the internal  stress  dis-  

tribution on the cross-section at 
0' and  about  the  point 0 ' ,  

M + d i  = moment of the  internal stress dis- 

- -  
V + d V  

dz - $6 . I  I I 

tribution on the  cross-section at 0;; O k  " M + dM 

o and  about  the  point 0. / 
I 

These are the moments at 0' and 0 respectively. 

For  the  element  to be in equilibrium,  the 

- 
V 

vector  sum of the  internal and applied  force Figure 26-Beam element. 
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resultants must be equal  to  zero.  Thus 

+ 
- V + v + d ? + ? d z  = 0 ,  

or  

where d z  is the  distance  between 0' and 0 measured  along the longitudinal axis of the  beam. 

In addition  to the above  condition, the vector  sum of the  internal  and  applied  couple o r  moment 
resultants  must be  equal  to  zero.  Then 

or  

where 

- 
k = unit  vector  normal  to  the  cross-section  at 0, and  the  moment  due  to  the  applied  force 

resultant ? about 0 is a second-order  effect which can be  neglected  (see Love, Refer- 
ence 6). 

The  vector  equations  that  define  the  elastic  equilibrium  condition  for  any  element  along  the 
beam are thus  given by 

-&+F dV = 0 ,  

For the  equations  to  be  effectively  used  in  solving  the  problem of thermally-induced  vibration, 
coordinate  systems  must  be defined in which deflection  can be measured  and  in which  the  applied 
forces  associated with  kinetic  motion,  damping,  and  the  thermal  environment  can  be  defined. 
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Figure 27-Clamped free  thin-walled  cylinder  of 
open  section. 

Coordinate  Systems 

Two coordinate  systems are defined  and a re  
related to  each  other  throughan  Euler  angle  trans- 
formation  matrix.  These  systems  are  identical to Y I \  z 

those  used  in  Reference 1. Consider  the triads 
shown in  Figures 27 and 28. 

Figure 28-Boom cross-section at  station z. 

Let: 

[X,, Y , ,  Z,] be the  inertially  fixed  triad  defined at the  centroid of the  clamped  root 

[x, Y ,  Z] be the  local,  or body, triad.  This  triad  slides  with  constant  velocity  along 
the  centroidal axis of the boom, maintaining a fixed  orientation  with  respect 
to  the  local  cross-sectional  principal axis of inertia  (directions shown in  Fig- 
u re  28) 

z be the  coordinate  used to measure  arc length  along  the  centroidal axis of the boom, 
measured  positive  from  the  clamped  root. At z = 0, the  inertial  and  local  triads 
are coincident. 

[<,, T,, z,] be a basis of three orthonormal  vectors f i x e d  in  the  inertial triad at z = 0 and 
parallel with  the X,, Y , ,  and Z, , axes respectively,  with  their  origin  at  the  centroid 
of the cross-section 

[i, j I k] be a basis of three orthonormal  vectors  parallel  respectively to  the X, Y ,  and z " -  
tr iad at the  point z ,  with their  origin at the  centroid of the cross-section at z = 0. 

The two sets of basis  vectors  are  continually  related  to  each  other by means of an Euler  angle 
transformation  matrix. This transformation  matrix is given below, and  the  rotation  sequence is 
shown in Figure 29. 

33 



1) = case, 0 

-s:e][y2 
~i:' s i n  e,  COS e ,  - s i n e 2  cos e, 

! cos e, cos cp - cos 0 ,  s i n  cp s i n  9, 

= s i n 8 , ~ i n 8 ~ ~ o s c p - t c o s 0 ~ s i n c p  - ~ i n B ~ s i n B ~ s i n c p + c o s 8 ~ c o s c p  

- cos6 ,  ~ i n 6 ~  C O S T  -t s i n 6 , s i n c ~  cos8, s i n 0 2   s i n c p - t   s i n B l c o s  rp 

At any  point z along  the  beam at time t ,  the  unit  vector which is tangent  to  the  centroidal 
axis is defined by the  vector  equation 

- + k *  = ~- JX(Z,  t )  : d Y ( z ,  t )  : d Z ( z .  t )  - 
' I  

d z  I 1  
___ 

d z  J 1  J z  k,,(72) 
i 

where [X( z .  t ). Y( z .  t ) ,  Z( z ,  t )]  a r e  the  coordi- 
nates of the  point z along  the  centroidal  axis  at 
time t relative to the [ x 1 .  Y , ,  zl] axis system. 
Since c* is equal  to k' by definition and 

r ; =  s i n e 2 ( z ,   t ) i l - s i n e l ( z ,  - t ) c o s 6 2 ( z ,  t ) ; ,  

+ C O S ~ , ( Z ,   t ) c o s t 1 2 ( z ,  t ) k ,  , (73) 

k1 i t  follows by equating  components  that actual  de- 

- 
- 

flection  can be obtained by solving  the  equations 

____ - J X ( z .  t )  
a Z  ~ i n 3 ~  ( z .  t )  , (74) 

d Y ( z ,  t )  - 

J z  -- - s i n B l ( z ,   t ) c o s b 2 ( z ,   t ) .  (75) 

J d Z ( z ,   t )  - 
J Z  - COS 0 ,  ( z ,   t )   c o s d 2  ( z ,  t )  . (76) 

Figure  29"Euler  angle  rotation sequence. 

Suppose  that  the body triad [X, Y, 21 slides  along  the  centroidal axis of the boom with  unit ve- 
locity.  The angular velocity 6 with  which the body triad  rotates  can be expressed  in  terms of the 
[ i  , j , kl set of basis  vectors which maintains  the  same  rotational  orientation as [X, Y, Zl relative 
to  the  inertial  fixed-axis  system.  The ahgular velocity  vector 5 can be written as 

.- - 
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where it can be shown that 

K -  
" dz COS 8 ,  COS cp + s in  cp , 

del de2 = " d z  cos 8, s in  cp f COS cp , (79) 

K and K '  are simply  the  components of the curvature of the  centroidal axis at the  point z and 
time t ,  and T is the  twist at the  same  point and time.  The  vector i? will  be needed in the subsequent 
analysis  whenever the derivatives of T, 7, and  with respect  to the coordinate z a r e  needed. 

Simplified  Equations o f  Elastic  Equilibrium 

The  vector  equations of elastic  equilibrium as derived  earlier  are: 

In order to solve  these  equations, they must  first  be  reduced to component form, be simplified by 
taking  into  account  the  constraints of the  problem, and have  the forcing  functions  defined. 

Using the  notation  and  terminology of Love (Reference 6), we let: 

V = N T t N ' Y t 6 ,  

where G and G'  a re   the "flexural  couples,"  and the couple H is the  "torsional  couple."  The  forces 
N, N ' ,  T are  called the "stress resultants,"  and  the  couples G ,  G ' ,  H the "stress Couples.'' Further- 
more,  the  applied  resultant  force  distribution is written as 

35 



and  the  applied  resultant  couple  distribution is written as 

By applying  the  principle that the change in a vector  due  to an infinitesimal  rotation is equal 
to  the  vector  product of the  rotation  vector  and  the  vector itself, one is led  to 

The  obvious  substitutions  can  be  made  into  Equations 68 and 70, the  necessary  vector  operations 
performed,  and  the  resulting  expressions  derived: 

Small-displacement  theory  can be applied  and  the  equations of equilibrium  simplified i f  dis- 
placements  from  the  unstrained  state  are  assumed  small.  This  assumption  reduces the equations 
to a tractable  form.  The  stability of the  response of the  system  can now be  analyzed;  however, 
predicted  steady  state  amplitudes of vibration  must  be  interpreted with  the assumptions of small- 
displacement  theory  in mind. 

By omission of terms  that are second  order  in  displacement,  the  equilibrium  Equations 88 and 
89 become 

and 
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From  Timoshenko's  theory of members of open  section,  the  flexural  and  torsional  couples are 
related to the  components of curvature  and  twist by the following: 

G = EIK , 

G' = EIK' , 

where 

E1 = average bending stiffness, 

c, = torsional  rigidity, 

Cw = warping  rigidity. 

If there is an initial  pretwist in the  rod defined by 

then the stress couple H is related to twist by 

d 2  ( 7 -  7 , )  

H = -C, a 2 2  
+ c, (7- 7 , )  . 

It  can be found in  various  texts,  in  particular  Reference 1, that  for a thin-walled  cylinder of open 
cross-section 

E1 

C, = 3 P h 3 G S  
1 

c J 
where 

(95) 



4 
r s i n  7 

S C  = - 4 '  n t -  2 

GB = shear  modulus of elasticity, 

E = Young's modulus of elasticity. 

Since  small-displacement  assumptions  have  been  introduced  into  the  equilibrium  equations, 
they  may  be  introduced  also  into  the  transformation  matrix (71)  to obtain 

into  Equations 78, 79, and  80  (for  curvature  components  and  twist)  to  obtain 

r -  - 2  d z  

z = Z ( z .  t ) .  (107) 

The  force  equilibrium Equation (90) can be resolved  into  the  inertial  coordinate  system,  and 
the  effect of tension  deleted  from  the  analysis. Equation 90 can  then be rewritten as 
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Since  the  vector  equation  defining  the  sum of all moments  (Equation 91) equals  zero,  each component 
must  equal zero and  hence 

- + @  0 dH 
dz 

Substituting  Equations  109  and 110 into  Equation  108  yields 

By using  the  relation  between C, C '  and K ,  K '  given by Equations 92 and  93,  and by noting  that 
products of small-displacement  terms  are of second  order, we may  express the derivatives of G 

and G' as 

d 2  G d 3  $ 2  
coscp + __ 

d z 2  dz 

d 2  G' d 3  i! d3 R 2  
_ _ -  - EI[$ s i n r p  + ~ 

dz dz 

Setting the components of Equation 112 equal  to  zero and substituting 113 and 114 yield 
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If pretwist 7o is considered  and if it and  the  amount of twist 7 about it can  be assumed  small- 
angle,  then  the  torsion  Equation (119) can  be  rewritten as 

These  are  the  equations of equilibrium which will be  solved  after  the  resultant  force  and  couple 
distributions  defined by and  have  been  derived. 

DISTURBANCE  FORCES AND  THE  EQUATIONS OF THERMALLY-INDUCED  VIBRATION 

The only disturbance  forces which will be of interest  in  this  paper  are: 

1. The body forces  associated with  the  translational  and  rotational  acceleration of all mass 
elements  along  the  length of the boom. 

2. The  dissipative  forces  associated with viscoelastic  damping of transverse  and  torsional 
motion. 

3 .  The  thermal  loading  associated with the  presence of the boom in  direct  sunlight. 

In addition  to  these  forcing  functions,  the boom attached  to an orbiting  satellite wil l  
be  disturbed by such  effects as: solar  pressure,  aerodynamic drag, gravity  gradient, 
satellite body motion,  etc. When accounted  for,  each of these  effects will  perturb  the 
actual motion  slightly. By excluding these  effects  completely  from  the  analysis,  one  can 
clearly show that  thermally-induced  vibration is possible  and is a prime  first-order  effect 
not  to  be  overlooked. 

The  disturbance  forces which are  distributed along  the  length of the boom can  be  expressed 
as an equivalent  resultant  force and couple  distribution.  The  equations of two-axis  transverse 
bending  and torsional  vibration  are  the  same as the  derived  equations of equilibrium  under  the 
action 01 the  equivalent  resultant  force and  couple  distributions. 

The body forces  associated with  the  reversed  kinetic  reactions of all accelerating  mass  ele- 
ments  along the entire  length  must be obtained using  vector  techniques.  The  expression is not  merely 
stated, but is derived  from  elementary  considerations;  since  the  standard  small-angle  assumptions 
break down when long, torsionally weak  booms a r e  studied. 
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The  actual  description of the  dissipative  forces is extremely  complicated,  and has not  yet  been 
completely  defined  experimentally. It is known (see Reference 10) that  frictional  contact  in  the 
overlap  region is a strong  contributor to the  damping of large-amplitude  transverse  and  torsion 
motion. It is also known that small-amplitude motion is damped by a viscoelastic-type  damping 
mechanism.  Experimental  work  done  in a cold  vacuum leads  to  results which give  damping  ratios 
for  small-angle  motion of anywhere  from 1.0% to .Ol% of critical. No work,  however, has been 
done  to measure  damping  in a thermal  environment o r  after extensive  wear  and/or  thermal  cycling. 

Since  there a r e  so many unknowns in  the  description of damping, it is assumed  that by defining 
two viscous  damping  ratios,  one  associated  with  transverse motion  and  one associated with torsional 
motion, an estimation of the  effect of transverse and torsional  damping  can be obtained. These two 
ratios are distinct  from  each  other; no attempt is made  to  determine how o r  whether  they a r e  re- 
lated to each  other  through  friction.  They are simply  used as independent parameters which can  be 
varied independently of each  other to determine  their influence on the  resultant motion of the boom. 

The  thermal loading is dependent upon the  boom’s  torsional  response. By defining a sufficient 
number of thermal  stations  at which the  torsional motion is recorded,  and  solving  the  thermodynamic 
equation at each  station  simultaneously with  the vibration  equations, a broken  linear  description of 
the  temperature  profile  and  hence  the  thermal loading is obtainable. By using  higher-order  inter- 
polation  techniques  between  stations,  an  accurate  description of the  thermal loading  can  be derived 
in terms of a thermal bending moment  and  torque  defined at  every point  along  the  length. 

Each of the three  disturbance  forces  can be described  completely  in  terms of a resultant  couple 
distribution and a zero  resultant  force  distribution.  This is done in  the following three  subsections. 
In  the  fourth  subsection,  the  results  are combined and the actual  equations of thermally-induced 
vibration to be solved a r e  written. 

Body Forces  Associated  With  Kinetic  Reaction o f  Mass  Elements 

The body forces  associated with the reverse  kinetic  reactions  can  be  derived  from  elementary 
considerations. At any  particular  instant of time,  the  vibrating boom will  be  in  some  deflected 
state, as shown in  Figure 30. 

Let z = 0 define  the  clamped  root of the  boom, z = L define  the  free  tip, z be an  arbitrary 
point  along  the  length,  and Z ’  be the location of any mass  element between z and L. The mass  ele- 
ment at z ‘  is assumed to  have mass p *  d z ’  and rotational inertia Is d z ’  , where 

p* = phP = mass  per unit  length of boom, 

Is = p* [r’ + e,’ + 2es see] = rotational inertia per unit  length a b u t  the  shear  center axis of the 
boom. 

If the  mass  element at z ’  is separated  from z by a finite amount  and is accelerating  in  the 
transverse  direction, it will  produce a moment  about  the  point z . 
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/ 
Let AS( z ' , z ,  t ) define  the  vector  connecting 

the points z and z '  . From  the  coordinate s y s -  
tems defined, 

- 
I 

Furthermore,  let 9' R( z ' , t ) d z  ' be the  force 
+ 

Figure  30-~nstantoneo,,s deflected position of born. associated with the 
mass  element  at z '  , where 

The  moment  at z due  to  the accelerating mass element is 

and  the  equivalent  couple  distribution  due  to  the  reversed  kinetic  reactions  associated with the trans- 
verse  acceleration of all mass  elements  along  the boom is iB, where 

Relative  to  the  inertial  coordinate  system, iB can be written  as 
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and by the  transformation  matrix (101) it can be expressed in the desired  form  relative  to  the  local 
[i, j , kl coordinate  system as 
" +  

where  the  differentiation has been carried out  and  second-order  term  deleted. 

Consider  the  kinetic  reaction at z associated with  the  rotational  acceleration of the mass  ele- 
ment at z ' . The  torque  at z due  to  this  element is 

1 _"___ k ( z ' )  d z '  
d 2 c p ( z ' ,  t )  - 

d t 2  

where 

E( z ' ) = unit  vector  tangent  to the boom a t  z '  . 

The equivalent  couple  distribution  due  to  the  reversed  kinetic  reaction  associated  with  the  torsional 
acceleration of all mass  elements  along  the boom is E , where 

To write iw relative to  the body axes [ i ,  j , kl it  must  first  be  written  relative to the inertial 
4 "  

axis system [ Y ,  , T , ,  El  1. Since 

Q z a )  = [ + I )  .1,] T1 + [ i ; ( d ) .  T1] 7, t [ T ; ( z ( )  . i; ,]  T;, , (129) 

i t  can be seen  from  the  transformation  matrix (101) that 

- 
K, = - I s  

In terms of body axes,  this  becomes 
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By combining E, and E, , the  total couple distribution which describes  the  reversed  kinetic re- 
actions of all accelerating  mass  elements can  be  written as ;,, where 

and 

0, = + I,'.. ( z l - z )  
J 2 X ( z ,   t )   J 2 Y ( z ' ,   t )   d 2 Y ( z ,  t )  J 2 X ( z ' ,  [ J z 2  J t z  J z2  a t 2  a t 2  

t g  d z '  - Is 

Dissipative  Forces  Associated  With  Viscoelastic  Damping 

As previously  discussed,  experimental  evidence  shows  that  the  dissipative  forces  are  not  pre- 
cisely  definable  for  any  arbitrary boom. It  can  be seen  from  Reference 10 that  so-called  identical 
booms  may  have  damping  characteristics which vary by as much as two orders  of magnitude. In 
accordance with these  findings,  only  viscous-type  damping is included.  It is argued  that, by vary- 
ing  the  damping  parameters, the  effect of frictional  damping  can  be  estimated via an equivalent 
viscous  damping  term. 
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and  let 

be  the  dissipative  torque  associated  with  the  torsional motion. 

The  equivalent  couple  distribution at z due  to  the  dissipative  force and  torque  associated  with 
all moving mass  elements  along  the boom is taken  to  be 

By the  transformation  matrix (101), K, can be rewritten as 

- 
K, = K, 9 + K,' + 0, c ,  

where, upon elimination of second-order  terms, 

Kd = p, 1 [ a t  s i n c p ( z ,  t )  + a t  coscp(z, t )  d z '  , 
J Y ( z ' ,  t )  d X ( z ' ,  t )  1 

Resultant  Thermal  Forces  Associated  With  Thermal  Loading 

In an  earlier  subsection,  "Thermal Loading  Associated  with Non-Uniform Temperature Dis- 
tribution,"  expressions are  derived which  define  the  resultant  thermal  bending  moment  and  thermal 
torque  at any particular  thermal  station z ; If one  assumes a sufficient  number of thermal  stations 
at which the thermodynamic  equation is solved  simultaneously  with  the  vibration  equations,  then by 
interpolation  techniques  the  resultant  thermal  loading  can  be  accurately  defined at every  point  along 
the  length. 
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From  the work previously done,  the  thermal  loading  at  position z at  t ime t can be defined by 
the  thermal loading vector %(z, t) ,  where 

From Equations 64, 65, and 66, 

n even 

To obtain  the  equivalent  couple  distribution 

due to the  thermal loading,  Equation 143 may be differentiated  with  respect  to z to obtain  the re-  
versed  thermal  reactions 

JBMx ( z ,  t )  
K, = - 

a 2  

where  the  derivatives of i ,  j ,  k a r e  considered of second-order  smallness. 
” +  

It  must be noted  that  neither BM( Z ,  t )  nor 

dBM( z,  t )  
a Z  
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is necessarily  equal  to  zero at the  tip of the boom, z = L. This fact implies  that  the  thermal load- 
ing introduces a time-dependent set of boundary  conditions which must  be satisfied for all time t . 

Thermoelastic  Equations  of  Thermally-Induced  Vibration 

Near  the  conclusion of an earlier subsection, "Simplified Equations of Elastic  Equilibrium," 
it  was found that  the  equations of equilibrium  were 

For  the  three  disturbance  forces of interest ,   i t  w a s  found that  each could be described by a 
zero  resultant  force  distribution and a particular  resultant couple  distribution. By vector  addition, 
the  total  resultant  couple and force  distributions  are 

F ~ , i  + F , ;  + F , C  = 0 ,  
- + 

+ 
= (Kc + K ,  + K , )  i + (K: +K,' + K H ( ) j  +'(ac + OD+ 0") k 

+ - 

Upon substitution  into  the  equations of equilibrium,  it follows  that 

(147) 
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where, if pretwist is considered, 9( z ,  t ) in the  torsion  Equation (151) is replaced by [cp( z ,  t ) 

- 90 ( 2 ,  o) ]  . By further  substitution of the  equations  developed in the  preceding  three  subsections 
and  deletion of second-order  terms, one  obtains: 

d 4   X ( z ,  t )  d 2 X ( z ,   t )  dX(z ,  t )  E1 -- f p* 
d z 4   d t 2  ' d t  

d 2  BMy ( z ,  t )  d' BM, ( z ,  t )  - - 
d z 2  

coscp(2, t )  + 
dz'  

s incp (z ,  t )  

' Is [ d t 2  d z 2   d z d t 2  
d 2  cp(z, t )  d 2 Y ( z ,  t )  d3  cp(z ,  t )  dY(z ,  t )  3 , (152) 

a z  . 

E1 
d 4 Y ( z ,  t )  d 2   Y ( z ,  t )  dY(z, t )  

,324 + " a t 2  ' px  d t  

d 2 B M y ( z ,  t )  d 2  BM, ( z ,  t )  
s i n i p ( z ,  t )  - - - 

dz '  dz '  
coscp(z ,  t )  

- dTsc ( 2 1  t )  
" d z  ' JL' p * ( z " z )  [T- J z  X ( Z ,  t )  d * Y ( z ' ,  t )  d 2   Y ( z ,  t )  d '   X(z ' ,  t )  1 d t 2  dz' d t 2  

d z '  . (154) 

These  are  the  equations of thermally-induced  vibration which will  be  solved  simultaneously 
with the  thermodynamic  equation  defined  at  each  thermal  station. 

SOLUTION  TO  EQUATIONS OF THERMALLY-INDUCED  VIBRATIONS 

Equations 152,  153, and 154 define  the  response of a thin-walled  cylinder in a solar  thermal 
field.  These  equations  may have their  solution  expressed in terms of the  orthogonal  functions which 
define  the  undamped-unforced normal  modes of vibration  for  the  system. 
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The  boundary  conditions that define  the  undamped-unforced  system are time-independent.  They 
define a boom that is clamped at the root, z = 0, in both two-axis bending  and  torsion.  The  tip, 
z = L, is f ree  both to  translate  and  to  rotate,  but has a tip weight  attached  to it which has both trans- 
lational  and  rotational  inertia.  The  method of attachment of the  tip  weight is such that the  tip re- 
mains free to  warp. This condition is consistent  with  the  end  conditions  for OGO IV, OGO v, and ATS D. 

When the  system is in a thermal  field,  there are certain  time-dependent  boundary  conditions 
that  must  be satisfied and that are a function of the  thermal  loading. 

To  solve a set of equations  having  time-dependent  boundary  conditions,  the  techniques  de7 
veloped by Mindlin  and  Goodman  (Reference ll), and  applied by  Boley  (Reference 2) to  solve a dif- 
ferent  thermally-induced  vibration  problem, are used. 

The  resulting  equations  can  be  given a physical  interpretation.  They  imply  that the elastic- 
restoring  force,  which  tends  to  drive  the  cylinder  toward  equilibrium, is measured not from its un- 
deflected  position  but  from a time-varying  position of static thermal  equilibrium.  The  frequency 
content of the  moving  position of thermal  equilibrium is therefore  important,  since if it has a strong 
component at the first natural bending  frequency a resonant  condition  can be excited. 

To determine  the motion of the position of thermal  equilibrium, both the  thermodynamic  and 
the  vibration  equations  must be solved  simultaneously. 

Time-Dependent Boundary Condit ions 
As previously  discussed, the cylinder is assumed to  be  clamped in both two-axis bending  and 

torsion at the root.  Hence 

(156a,  b, c) 

In actual  practice  these  root  conditions  are  functions of the  satellite body motion. For a gravity 
gradient  satellite,  the  situation is further complicated by the  fact  that  roll,  pitch,  and yaw motion 
are coupled.  Breakwell  and  Pringle* show that, for  an undamped rigid body in circular  orbit, low 
frequency  (near  orbital)  non-linear  resonances  affecting  gravity  gradient  stabilization  can exist. 
This is another  phenomenom  not  yet  fully  understood  which  can  impair  the  performance of a flexible 
gravity  gradient  satellite. It is, however,  not  related  to the relatively high  frequency  thermally  in- 
duced  oscillation  problem  discussed  herein. 

At the  tip  warping is not restrained.  Hence 

(157c) 

If pretwist is to  be  considered,  the  boundary  conditions  on  the  torsion  equation a r e  obtained by 
simply  replacing cp( Z ,  t) by [v( z ,  t ) - v,, ( Z ,  O ) ]  in the  above  and  subsequent  torsional  boundary 
condition  equations. 

‘Breakwell,  J.V.,  and  Pringle, R .  Jr.,  “Nonlinear  Resonance  Affecting  Gravity-Gradient Stability,”Astrodynamics (ed.  Michal  Lunc), 
Proc. XVI International  Nautical  Congress,  Athens, 1965, Gauthier-Villair,  Paris, pp. 305-325, 1966. 
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Attached  to the  tip is a tip  weight  which  has  both  translational  and  rotational  inertia.  Let 

W, = tip  weight, lbs, 

I, = rotational  inertia of tip weight, lbs  sec2  in., 

g = acceleration of gravity,  in./sec2 , 
and  assume that the  tip is free to translate  and  rotate  in  the  thermal  environment. At the  tip  there 
is zero bending moment  attributable to the  tip  weight; but the  thermal loading does  impose a con- 
dition  that  must  be  satisfied.  Hence 

E1 
J 2   X ( z ,  t )  

a z 2  

J 2 Y ( z ,  t )  
J z 2  

The  translational  and  rotational  acceleration of the  tip weight gives  rise to a shear  force, and 
the  thermal loading  gives rise to what might be termed a "thermal shear." Both must be balanced 
a t  the  tip by the internal  stresses. Hence 

I ,  (158a) 

1 2 - L  

(158b) 

z = L  

(158c) 

These  stated boundary  conditions are  consistent with the  thermostress  analysis of Boley and 
Weiner  (Reference 2). Recent work by P. Jordan  (Reference 12) shows  that, when warping  deforma- 
tion  due to  thermal  strain is accounted for,  the  warping  condition  at  the free end (Equation 157c) 
is non-zero.  However,  for a boom of practical  interest (long  length) this quantity is small  and i ts  
effect  approaches  that of other  deleted  second-order  terms. 
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Instantaneous  Position o f  Thermal  Equilibrium 

In order to solve  the  equations of thermally-induced  vibration  and  satisfy the time-dependent 
boundary  conditions,  the  concept of an instantaneous  position of thermal  equilibrium  must be intro- 
duced. It is defined as the  position  that  the boom would instantaneously  assume i f  i t  had zero mass. 
From  this definition,  Equations  152,  153,  154,  and  the  boundary  conditions  defined in  the  preceding 
subsection, it follows that the  instantaneous  thermal  equilibrium  shape of the boom is defined by the 
solution of the  equations 

a 4 y S ( z ,  t )  J 2  

a 2 4  
= , l [ B M y  ( 2 ,  t )  s incp(z,  t ) - B M x ( z .  t ) c o s c p ( z ,  t)] , 

and  the  boundary  conditions 

(163a, b, c) 

(164a) 

(164b) 

(164c) 

(165a) 

(165b) 

(165c) 
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Integrate both sides of Equations  159  and  160  twice  with respect  to z ,  integrate both sides of 
Equation  161  once  with  respect to z apply  the  boundary  conditions  164a  through  165c,  and  find  that: 

and 

where  it  will be recalled from an earlier  section  that 

n = 2  ~ 

n even 

n = l  
n odd 

. ,  

(169a, by c) 

(170a, by c)  

(171c) 
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Since the sun linez( z ,  t )  is always  assumed  to  be  normal to  the  longitudinal axis of the  boom, 
and q(z, t )  measures  positive  rotation of the  cross-section about  the axis, 

where 

Having  defined a sufficient  number of thermal  stations at which  the  generalized  thermal  co- 
ordinate  equations are solved, we  have a good approximation  to BM, ( z  , t) , BM, ( Z ,  t ), and TsC ( Z ,  t ) 

at hand. Equations  166  and 167 are initial-value  problems  and are readily  integrated  using any 
standard  higher-order  numerical  integration  technique.  Equation 168 along  with  169c,  170c,  and 
171c  defines a boundary  value problem which is not as easily solved.  It is, however, a linear  dif- 
ferential equation  with  constant  coefficients. 

To solve Equation  168, let rp, ( Z ,  t )  be  the  particular  solution of the  initial-value  problem  de- 
fined by 

where 

(this  problem is readily  solvable by numerical  techniques). Making use of v, ( z ,  t )  , i t  is then easily 
shown that  the  equation 

where 

satisfies Equation 168 and its respective  boundary  conditions. 
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Thus  the  instantaneous  thermal  equilibrium  position  defined  by  the  coordinates 

can  be  obtained by numerically  integrating  the  generalized  thermal  coordinate  along  the  length of 
the boom at each instant of time. 

Equations o f  Undamped-Uncoupled  Thermally-Induced  Vibration 

The  solution  to  the  equations of thermally-induced  vibration (152, 153,  and  154) can  be ex- 
pressed  in  terms of the  solutions  to  the  eigenvalue  problem  defined by the  equations of undamped- 
uncoupled thermally-induced  vibration;  that is, 

and  the  boundary  conditions  given by Equations  155a  through  158c.  Assume  solutions of the  form 

Y(z, t )  = Ys ( z ,   t )  + e i o x t  y ( z ) ,  (181) 

and directly  substitute  info  Equations 177, 178,  179  and the boundary  condition  Equations (155a 
through  158c),  using  the  relations  developed  in  the  preceding  subsection. One is immediately  led 
to  the following set  of eigenvalue  problems: 

E1 7 - p* ~J:x(z) = 0 , 
d4 x( z )  

d z  
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where 

(186a, b,  c) 

(187a, b, c) 

(188a, b,  c) 

(18 9a) 

(189b) 

(189c) 

Equations 183 and 184 along  with  their  appropriate  boundary  conditions a r e  the standard  eigen- 
value  problem which defines  the  undamped-unforced  normal bending modes of vibration of a clamped 
free  beam with tip weight. Similarly  Equation 185 along  with its  appropriate boundary  conditions  de- 
fines  the  undamped-unforced  normal  torsional  modes of vibration of a thin-walled  cylinder of open 
section  without  shear  center  effects,  clamped a t  the  root,  free  to  warp at the  tip,  and having a tip 
inertia.  The  solutions  to  these  equations are rather  standard, but for  completeness  are  included 
in Appendix B. 

From Appendix B the following is obtained. 

w x  = nth natural  frequency of vibration  associated with transverse motion. 
n 

X, ( Z )  = y, ( Z )  = nth  normal-mode of transverse  vibration;  since  bending  stiffness E1 is con- 
stant about all axes, X, ( z )  and y, ( Z )  are equal. 

Both x, ( z )  and y, ( z )  satisfy  the  orthonormality condition that 



where 

W, = weight of boom  without  tip  weight 

w, = p*Lg I 

w = nth  natural  frequency of vibration  associated with torsional motion, 
'pn 

'p, ( z )  = nth  normal mode of torsional  vibration. 

'p, ( 2 )  satisfies  the  orthonormality condition  that 

where 

If pretwist is considered, ~ ( z ,  t )  and 'p, ( z ,  t )  are replaced by ( ~ ( z ,  t )  - 'p, ( z ,  o)] and ['p, ( z ,  t )  

- 'p, ( z ,  t ) ]  respectively in Equations  179  and 182. 

Generalized  Displacement  Coordinates 

The  results of the two immediately  preceding  subsections  can be used  to  express  the  solution 
to  the  equations of thermally-induced  vibration (152, 153, and  154) in  terms of the  normal  modes of 
vibration  and  their  corresponding  generalized  displacement  coordinates. 

Assume a solution  of-  the  form 
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Since at each instant of time  the  coordinates of the  position Of thermal  equilibrium are known, 
they can be  expressed as 

where 

(Os ( z ,  t )  = Y, ( t ) 'P ,  ( 2 )  1 

n = 1  

Equations  196,  197,  and  198  can now be  rewritten as 

m 
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If pretwist is to  be  induced in the  analysis,  wherever (p( z ,  t )  and 'p, ( z ,  t )  appear in the above 
equations  the  quantities [(p( z ,  t )  - (po ( z ,  O ) ]  and [ ( p s  ( z ,  t ) - (po ( 2 ,  o ) ]  should  be  substituted 
respectively. 

The  equations of thermally-induced  vibration (152, 153,  and  154) axe  solved by: substituting 
into  them  the  assumed  solutions (205, 206, and 207);  making use of the  eigenvalue  equations (183, 
184,  and  185),  which must be satisfied by all natural  modes and frequencies of vibration;  and mak- 
ing use  of the  equations (159, 160,  and  161)  that  define  the  instantaneous  positions of thermal 
equilibrium.  Carrying  through  the  prescribed  algebra  yields: 

Equation  210 is unchanged i f  pretwist is included. 

Define  the generalized  displacement  coordinates  to  be 
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where 

Multiply  both sides of Equation 208 by xm ( z ) ,  Equation 209 by y, ( z ) ,  and  Equation 210  by 'p, (2). 
Integrate  over  the  length  from z = 0 to z = L and  apply the  orthonormality  relations  given by Equa- 
tions 190  and  194  to obtain  the  ordinary  differential  equations which define  the  generalized  displace- 
ment  coordinates: 

where A,' ( t )  , B,' ( t )  , and Cn* ( t )  are.the  generalized  forces  associated with the nth mode of vibra- 
tion,  given  by 

and  where  the  damping  coefficients P, andP,  have  been  written  in  terms of their  corresponding 
viscous  damping  ratios 5, and 5,. If there is zero  tip weight,  they a r e  defined by the  expressions 

P, = 2P* 5 , w ,  3 (220) 
n 

PQ = 21s " p Q n  9 (221) 
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However, if  there is a tip weight, since  energy cannot  be dissipated  across it, its effect  must be 
subtracted out. Thereupon i t  is found that 

Generalized  Forces 

Equations 217, 218,  and 219 define  the  generalized  forces An* ( t ) ,  B,* ( t ) ,  and C,* ( t )  respec- 
tively.  These  quantities  define  the  dynamic  coupling  between  transverse  and  torsional  motion.  It 
is reasonable to assume  that  they  can  be  adequately  approximated by the  first-mode bending  and 
torsional  components of the  resultant motion.  Accordingly, we let 

and  substitute  into  Equations 217, 218, and 219 to  obtain 

where 

and 
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where 

It is noted  that 

for all n. Since  the  equations  for  the  mode  shapes x, ( z ) ,  y, (z), and 'P, ( z )  a r e  known and  given in 
Appendix B, the  integrals  defining T, and P, can be obtained by either  closed-form or  numerical  
integration. 

If numerical  integration is used, then T, can  be found by solving  the  differential  equation 

where 

and 

Similarly, P, can be found by solving  the  simultaneous  differential  equations - dz = H ( z )  , 

" dlKz) - - p* ( 2 )  y ,  ( z )  , 
d z  

where 



and 

It  must be kept  in  mind  that  the  generalized  force  expressions  discussed  in this section result 
from  the  fact  that  standard  small-angle  assumptions  cannot  always  be  applied in the analysis of ex- 
tremely long torsionally weak beams. For short  and/or  torsionally stiff beams,  these  forces  should 
be  negligible. 

By comparing  the  resultant  responses  obtained  for  various  hypothetical  examples  with  and 
without these  terms  included  in  the analysis, it has  been found that: 

1. Results  obtained  either  with o r  without An* ( t )  and Bn* ( t )  included are  essentially  the  same 
for the  class of problems being  considered. For beams which a r e  much weaker  in bending, 
however,  these  terms could be important. 

2. Results obtained  with  and  without Cn* ( t  ) included are  radically  different  for  the  class of 
problems  being  considered. As torsional  rigidity is increased or  length decreased, the 
effect of cn* ( t )  on  the  resultant  response is diminished. 

For production-type  runs  these  observations a r e  applied  to  increase  the  speed of digital  com- 
putation.  That is, cn* ( t  ) , the  coupling of bending into  torsion, is left unchanged  but all dynamic 
coupling of torsion  into bending,  defined by An* ( t ) and Bn* ( t ) , is assumed  negligible  and  thus  de- 
leted by setting 

Summary and  Method o f  Solution 

The  work  presented in the  previous  subsections  shows that the  solutions  to  the  equations of 
thermally-induced  vibration  can  be  expressed  in  the  form 

.6 2 



The  equations that define the generalized  displacement  coordinates are: 

Also shown is that  the  thermal  loading  defined by the  quantities 

and  hence  the  coordinates of the  instantaneous  position of thermal  equilibrium  defined by 

can be written  in  terms of the  generalized  thermal  coordinates qn ( z ,  t ) defined at a sufficient num- 
ber of thermal  stations  along  the boom. 

To solve  the  generalized  thermal  coordinate  equations 

the  generalized  thermal input Q, ( z ,  t )  must be known as a function of time and position  along the 
boom. 
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Q, ( Z ,  t )  has been  shown to  be  an  analytic function of the relative  sun  orientation $( z, t ) .  Thus, 
by simultaneously  solving  the  generalized  displacement  and  thermal  coordinate  equations,  the gen- 
eralized  thermal  input Q, ( z ,  t )  can be continually  updated  from a knowledge of 

n = l  

The  numerical  solution of the  derived  equations  thus leads to the  description of  how a thin- 
walled  cylinder of open section  will  respond when placed  into  direct  sunlight. 

The  derived  equations  given  here  have  been  programmed  for  digital  solution on the SDS-9300 
computer.  The  program  could  use as many as 20 thermal  modes, 60 thermal  stations, and 9 in- 
dependent  modes of vibration.  The  results showed that good accuracy w a s  possible  using  only  four 
thermal  modes,  excluding  that  associated with A,, . The  number of thermal  stations  used  for  the  runs 
excluding  the  effect of thermal  torque was 20; when thermal  torque  was  included, 50 thermal  sta- 
tions were used. For all runs,  transverse  motion has been found to be essentially  first-mode.  Tor- 
sional  motion,  however,  was found to  have a slight  second-mode  component, s o  that two torsional 
modes of vibration  were  included  in all runs to ensure a good representation of the  thermal loading. 

Trapezoidal, Heun, Simpson's,  and  fourth-order  fixed-step  Runge-Kutta  integration  techniques 
were  used to solve the generalized  displacement  coordinate equation  and in  the  integrations needed 
to  define  the  thermal-equilibrium  position.  However,  for  production  runs,  Runge-Kutta  integration 
proved  the  most  efficient. To circumvent  the  numerical  problems  associated with  simultaneously 
solving  the  thermodynamic  and  vibration  equations when the  thermal  time  constants are much 
shorter than the  natural  periods of vibration,  an  exponential  interpolation  technique was developed 
for  solving  the  generalized  thermal-coordinate  equations.  This  permitted  the  use of a reasonable 
timewise  integration  step  and  prevented  computational  instabilities  in  solving  the  thermodynamic 
equations. 

PRESENTATION OF RESULTS 

The  nominal  model  for  the  results  presented is the  antenna  used on OGO IV and other  existing 
satellites.  These  results  should  provide a heuristic  understanding of the  basic  mechanism behind 
thermally-induced  vibrations  and  the  effect of changes  in  various  parameters on its magnitude.  The 
parameters  studied  are  those which can be controlled by a manufacturer  and  used to  govern  the 
amplitude  and  stability of motion.  Nominal magnitudes  used  to  describe  the  geometrical  and  physi- 
cal properties of the  antenna are shown in  Table 3 .  

For all runs  presented,  the  antenna is assumed  to be  initially in  an unstrained  state with a uni- 
form  ambient-temperature  distribution.  The  sun is assumed to  be  turned on at time  zero,  and its 
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Table 3 

Antenna material 

Antenna length 

Perimeter of cross-section 

Total  overlap  angle 

Wall thickness 

Weight density of material 

Shear  modulus 

Young's  modulus 

Bending stifhess 

Damping ratio  for  torsion 

Damping ratio  for bending 

Torsional  rigidity 

Warping rigidity 

Thermal  conductivity 

Specific  heat 

Solar radiation  intensity 

Thermal  expansion  coefficient 

Emissivity 

4bsorptivity 

Stefan-Boltzmann constant 
~ 

.__ 

= beryllium  copper,  silver-plated 

= L = 6 0 f t  

= P  = 2in. 

= 4 = 90 deg 

= h = .002 in. 

= p = .2714 I b h 3  

= Gs = .6 X l o 7  Ib/in? 

= E = .19 X 10' lb/in? 

= E1 = 16.6 lb  f t 2  

= 5, = . 2  

= 5, = .005 

= C, = .05 Ib-in? 

= C, = 1,700 Ib-in.4 

= KT = 4.167 Btu/(hr-in.-.F) 

= c =  .1 Btu/(lb-OF) 

= J ,  = 3.065 Btu/(hr-in.2) 

= ec = . l o4  x in./(in.-OF) 

= 6 = .035 

= as = .13 

= = .121 x 10"' Btu/(hr-in2) 
- 

orientation  remains  fixed  in  time,  unless  otherwise noted,  along the  inertially fixed  negative Y, axis. 
Throughout  the  ensuing  dynamic  response,  the  thermal  input  at all thermal  stations is assumed to be 
that of one sun normal to  the  strained longitudinal axis. 

It should  be  further  noted  that in several  examples  the  predicted  amplitudes  exceed  the  limits 
of small  angle  deflection  theory.  However,  since  numerical  results  agree with satellite  data  in a 
phenomological  sense,  the  effects of including  neglected terms would probably  change  the  numerical 
values of the  answers but  not the  basic  characteristics of the motion. 

Effect  of  Thermal  Torque 
&ley  (Reference 2) shows that shear   s t resses  exist in all cases  where the temperature  varies 

along  the  length of the boom. Appendix A  derives  the  shear-stress  distribution  and  resultant  ther- 
mal  torque  expression  theoretically  for  the  special  case of a thin-walled  cylinder of open  section. 
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Recent  unpublished  test data obtained by R. Predmore  and C. Staugaitis at NASA/GSFC indicate 
that torsional  response  due  to  thermal  torque can  be reasonably  well  predicted by this analysis. 
More  experimental  work is needed,  however,  before a more  positive  statement  can  be  justified. 

In addition to the work of Predmore  and  Staugaitis at NASA/GSFC, an independent experimental 
program  has  been  carried out at NASA/Ames by R. M. Beam.  The results of Beam's  work have 
been  published  (Reference 13). Although Beam restr ic ts  h i s  study  to a boom with zero  overlap, he 
has  been  the first to  conclusively  prove  experimentally that the  theory of thermally-induced  vibra- 
tion as presented  herein is physically  realizable. In addition  to  demonstrating  thermal  flutter, 
Beam has in  his  report  presented  an  extensive amount of experimental  and  theoretical  work  re- 
lated  to  the study of thermal  torque. One of h is  most  interesting  experimental  results is that, for 
certain  sun  orientations,  thermal  torque can  excite a torsional  instability.  This  region has  been 
defined  both  experimentally  and  theoretically  for a short  zero-overlap boom. The  material  to be 
presented  herein is consistent with the  experimental  findings  both of Beam  and of Predmore and 
Staugaitis. 

Keeping in mind  the  possibility of some  inadequacy in any  representation of thermal  torque, we 
began a qualitative  analysis of it by making  numerous  computer runs to determine  the  effect of 
changes in torsional  damping, initial sun orientation,  pretwist,  length,  and of the  inclusion of the 
first  three  torsional  modes of vibration. 

In order to  build  confidence  in  the  analytic  model,  several of these  computer  runs  attempted to 
duplicate  laboratory  test  data. Actual  data  obtained by Predmore  and  Staugaitis  at NASA/GSFC 
will not be presented  herein.  Simple  visual  observations  concerning  basic  response  characteristics 
will,  however,  be  stated. 

For all booms  tested, it was noted  that,  for  some sun orientations  relative  to  the  outer  seam of 
the  boom,  twisting  was  small;  and that, for  other  sun  orientations,  twisting  was  quite  large.  To 
accent this  effect, a 10-foot black  painted  standard boom was  tested  in  the  laboratory, and simu- 
lated with the  analytic  model.  Because of the  painting  and  end  conditions,  it was  felt  that  damping 
could be reasonably  well  simulated by assuming 

Emissivity  and  absorptivity  were  measured  and found to  be 

E = . 8 ,  a = . 8 .  

All other  parameters  were  nominal. The effects of pretwist  and  relative  sun  orientation  were  stud- 
ied. This was  done by slowly  rotating  the  sun  at  180"/min  around  the  perimeter of the boom. The 
computed results  are  summarized  in  Figure 31. 

Tip twist q(L, t )  is plotted  versus  sun  orientation +(o, t )  for  varying  amounts of pretwist.  The 
curves  labeled A, B, C, D, E, and  F  correspond  to  linear  pretwists of 0, .5, 1.5, 3.0, 4.5, and 6.0 
degrees  per foot,  respectively. 
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B. Pretwist = 0.5'/ft 

C. Pretwist = 1.5"/ft 

D. Pretwist = 3.0°/ft 

E. Pretwist = 4.5O/ft 

F. Pretwist = 6.0°/ft 
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"/2 7r 3 75/2 275 

Figure  31-Thermally-induced tip  twist vs relative sun orientation for booms 
having  linear  pretwist. 

Both theory  and  test  data show a significant change in  the  amount of tip  twist when  the sun 
moves  across  the  outer  seam of the boom. The  magnitude of the  twist  observed  runs  approximately 
the  same as that  predicted  for  booms  pretwisted 30 to 60 degrees. A significant  dependence upon 
pretwist  was not observed  in  the  laboratory. It is suspected  that, if shear  center  offset and  the  ex- 
act  boundary  conditions  for  the  torsion  equation  discussed in Reference  12  were  accounted for, the 
torsional  response  predicted would be less  sensitive  to  changes  in  pretwist. 

In Reference 13 it is stated  that i f  there is sufficient  damping  in  the  system  all  thermally- 
induced torsional motion  will be stable. If damping is small,  however, a torsional  instability  will 
exist  for  certain sun  orientations.  This phenomenon h a s  been  observed  experimentally both by 
Predmore  and  Staugaitis at NASA/GSFC and by Beam a t  NASA/Ames. Jordan  (Reference  12)  makes 
use of earlier  work  (Reference 1) by Frisch  and  predicts  that  the  region of instability is where  the 
function e c  Ehr ( J V / J + )  shown in  Figures 15 through 24 is negative. 

Beam, in his study of the  zero-overlap  boom,  goes one step  further  and  shows (by a small- 
angle  single-degree-of-freedom  analysis)  that  the  instability  can be either  divergent  oscillatory 
or  divergent  non-oscillatory. 

The  results shown in  Figures  32  through 37 attempt  to  illustrate  the  regions of stability  and 
instability  for a particular  example.  The  example  chosen is the  black  painted  10-foot boom used 
for  the  results  presented  in  Figure 31. The  transverse damping ratio is changed to 

5 ,  = . 01  , 

and a pretwist of 30" is assumed. The  sun is turned on at time  zero  and starts to  spin  around  the 
perimeter of the boom at a rate of 180"/min in  the  positive  direction  starting  from a position di- 
rectly  over  the axis of symmetry of the  clamped  root  and  over the  overlap. 
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Figure 32"Torsional component for  tip  of 10' boom,  sun spinning at 180°/min, thermal  torque included. 
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Figure 33"Torsional component of thermal equilibrium  position for 10' boom, 
sun spinning at 180°/min, thermal  torque included. 

In Figure 32 the  amplitude of the  torsional  motion of the  tip is plotted as a function of time. 
Relative  sun  orientation  and  time  are  related by the simple  linear  equation 

where t is time  measured  in  seconds. 
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Figure 34-X, component  for t ip of 10' boom,  sun spinning at 180°/min, thermal  torque  included. 
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Figure 35-X, component of thermal  equilibrium  position  for 10' boom, 
sun spinning at 180°/rnin, thermal  torque  included. 

Although the  resultant  response  appears  to be quite  complex, it is evident that for  certain sun 
orientations  the  amplitude of the  torsional  response  grows  rapidly  and  for  other  sun  orientations 
it rapidly  decays  to  an  approximate  steady  state  level. 

From  this  single  figure it is not possible  to pinpoint exactly  regions of stability and  instability; 
however, one does  see that they exist and that they  roughly correspond  to  those  predicted by the 
small-angle  analyses of Jordan  (Reference 12) and  Beam  (Reference 13). That is, where  the  func- 
tion ec Ehr (dv/d+)  shown in  Figure 15, curve A,* is negative,  linear  theory  applied  to a single- 
degree-of-freedom  model  predicts a torsional  instability. 

*180°/min = .0524 rad/sec 2 .05 rad/sec. 
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Figure 36-Y, component for t ip  of  10' boom,  sun spinning  at 180°/min, thermal  torque included. 
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Figure 37-Y, component of thermal equilibrium  position for 10' boom, 
sun spinning at 180°/min, thermal  torque included. 

In Figure 33 the  torsional  component of the  position of thermal  equilibrium  for  the  tip is plotted 
as a function of time. For the  time  span shown it is evident that after  the  initial  thermal  transient 
phase  the  curve shown repeats  itself  every two minutes (the time it takes  the  sun  to  complete one 
revolution  about  the  perimeter). 

The  points  labeled@and@on  this  curve are the  points at which a phase reversal  occurs.  That 
is, between these two points the motion of the  torsional component of the  thermal  equilibrium  posi- 
tion is such  that it acts  as a destabilizing  negative  spring. It has  been  remarked  herein  that 
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small-angle  theory  predicts  an  instability  for  relative sun orientations that yield  negative 
e c  Ehr (dv /a+) .  A direct  comparison  between  Figure 15 (curve A) and  Figure 33 shows that the 
points @ and @ in the latter correspond  to  the  points 'at which e c  Ehr (dV/d+) equals  zero  in  Fig- 
u r e  15 ,and that  for the time  spans  between @ and @ the  function is negative. 

As previously  mentioned,  the  existence of torsional  motion  induces  changes  in  the  position of 
thermal  equilibrium which in  turn  can  induce  transverse  vibrational motion. This  effect is shown in 
Figures 34 through 37, in which the X, and Y, components of the  actual  position  and  thermal  equi- 
librium  position of the  tip a r e  plotted  using  the  same  horizontal  scale as for  Figure 32. 

It is evident that a very  small motion of the  position of thermal  equilibrium at the first natural 
bending  frequency of the system  can  and  does  induce a significantly  strong  response. A similar 
type of response has been  observed  experimentally. 

Although an  easily  grasped analogy  between  the phenomenon of thermal  torque  and  some ob- 
vious  everyday  occurrence is not presently  apparent, a heuristic  discussion of this  concept  may 
prove  useful  for  future  investigation. 

Whenever a non-uniform temperature  distribution  exists  along  the boom, the  normal  thermal 
stresses  that  produce  pure bending are accompanied by shearing  stresses  that  produce  torsion. 
For  most  closed-section  tubes of practical  interest,  the  shearing  stresses  are too small  to  pro- 
duce any noticeable  twisting.  For  cylinders of open section,  however, which are  extremely weak 
in  torsion,  the  effect of these  shearing  stresses  can be quite  significant. 

Since  the  mathematically  perfect boom has never  been  made,  non-zero  shearing  stresses  will 
always  exist  in  booms  exposed  to  direct  sunlight.  The boom attempts  to  relieve  this  state of 
s t r e s s  not only by bending,  but also by twisting,  toward a position of thermal  equilibrium. In a 
single-degree-of-freedom  analogy of torsion,  the  net  effect of the  shearing  stresses (or their  re- 
sultant  thermal  torque) is to  act as a thermal  spring whose  magnitude  and  sign a r e  dependent upon 
sun  orientation.  For the regions of torsional  instability,  the  thermal  spring is negative. 

It has  been shown here  that  the  inclusion of thermal  torque  in  the  analysis is necessary i f  a 
detailed  description of the  torsional  response of the boom is desired. If one is interested only in 
whether  or not transverse  thermally-induced bending  motion is stable, it has  been found that  the 
inclusion of thermal  torque  in  the analysis of long  booms  (greater  than 30') is merely a compli- 
cating  factor  that  does not affect  basic  conclusions  concerning  the  stability of transverse motion. 

Figures 38 and 39 a r e  included  to  illustrate this point. The  oblique  (time) axis is introduced, 
and  the  origin of the coordinate  system  in which tip  deflection is measured is allowed  to  simply 
translate  along  the  time axis at a constant  rate without rotation of the coordinate  system.  The  mo- 
tion shown is only that of the  actual  position of the  tip;  neither the torsional  response  nor the  posi- 
tion of thermal  equilibrium  toward which the boom is constantly  moving is shown. 

In Figure 38 the  effect of thermal  torque is included  in  the  analysis;  in  Figure 39 the  effect is 
deleted.  The boom studied is assumed  to  be 30' long  and to  have  nominal  physical  and  geometric 
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2.5 ft 

6- 2.5 f t  

Figure 38-Tip motion of 30' boom for  nominal param- 
eters with thermal  torque included  when  placed i n  di- 
rect sunlight at  time zero. 

2.5 f t  

- +"" 2.5 f t  

Figure  39-Tip motion  of 30' boom for  nominal  param- 
eters without  thermal  torque  included when placed  in 
direct  sunlight  at  time zero. 

characteristics.  The  sun is assumed to be fixed  directly  over the cross-sectional axis of sym- 
metry of the  clamped  root  (along  the  negative Y, axis). In both figures  the  resultant  response is 
seen  to be  unstable. Although the  actual  time  histories do differ  from  each  other, it can  be  seen 
that  basic  conclusions  remain unchanged. 
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From this example  and  several  other  computer  runs (not shown) it has been  concluded that for 
long booms  the  effect of thermal  torque is simply a complicating  factor  and that the  prime  inducer 
of torsional  motion is the  dynamic  coupling of non-planar  bending  motion  into  torsion. 

By including  only the  dynamic  coupling terms  in  the  analysis, a practical  answer  to the stability 
question  can  be  obtained.  This is done in all succeeding  runs, which show that with the  effect of 
thermal  torque  deleted it is still possible  to 
demonstrate that transverse  thermally-induced 
vibrations  can  occur; and, furthermore, that the 
predicted  amplitudes  are  reasonably  close  to 
those  deducible  from  existing  flight  data. 

Ef fec t  o f  Length 

Figures 40, 41, and 42 illustrate  the  effect 
of a change in boom  length by showing the  com- 
puted  dynamic  response of a 60') 45')  and 30' 
nominal boom respectively.  For  the  time  span 
shown, it is seen that each boom exhibits 
thermally-induced  motion.  The  vibration  ampli- 
tudes shown in  Figures40  and 42 are  consistent 
with data obtained  from  the  flights of the OGO 
IV and OGO V satellites: that is, the 60' boom 
on OGO IV is believed  to  oscillate with an  am- 
plitude of about *20 feet,  and  the 30' booms on 
OGO V a r e  believed  to  oscillate  with  an  ampli- 
tude of about &2 feet. 

Besides showing this correlation  between 
predicted  and  observed data, these  three  fig- 
ures  also  illustrate the sensitivity of the 
thermally-induced  response  to  changes  in  an- 
tenna  length. 

Effect  of  Transverse  Damping 

Figures 43, 44, and  45 show the  effect of a 
change  in  the  transverse  damping  ratio of the 
antenna. If this parameter could be  easily con- 
trolled  and  significantly  increased  above its 
nominal  value of 0.005, the amplitude of the 
thermally-induced  vibration  could  be  stabilized, 
or at least  limited  to  an  acceptable  magnitude. 

IO ft - 

~ 

Figure  40-Tip motion of 60' boom on OGO IV when 
placed in  direct sunlight  at  time zero. 
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Figure 41-Tip motion of 45’ boom for nominal 
parameters when placed in sunlight a t  time zero. 

10 Ft 

IO ft 
I 
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Figure 42-Tip motion of 30’ boom on OGO V 
when placed in  direct sunlight a t  time zero. 

Attempts  have  been  made  to  increase  the  transverse  damping  characteristics of the antenna by 
coating  the surface with  thin viscoelastic  laminae;  however,  the  experimental  work  reported  in  Ref- 
erence 10 shows  that  these  attempts  have  been  essentially  unsuccessful. 
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Figure 43-Tip motion of 60’ boom for nominal param- Figure 44-Tip motion of 60‘ boom for  nominal  param- 
eters and transverse damping ratio .005 when placed in  eters and transverse damping ratio .05 when placed  in 
direct  sunlight  at  time zero. direct  sunlight  at  time zero. 

Effect  o f  Torsional  Damping 

Figures 46, 47, and 48 illustrate  the  observation  that,  for  large-amplitude  thermally-induced 
transverse motion to  exist,  the  antenna  must  respond  torsionally at or  near the first natural 
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Figure 45-Tip motion of 60' boom for nomina! param- 
eters and transverse damping ratio .10 when placed i n  
direct  sunlight  at  time zero. 

2.5 f t  

BOOM LENGTH 30 ft 
TORSIONAL  DAMPING  RATIO 

J I 
2.5 f l  

Figure 46-Tip motion  of 30' boom for  nominal  param- 
eters and torsional damping ratio zero when placed in  
direct  sunlight  at  time zero. 

transverse bending  frequency w X  . This  response  in  effect  causes  the  position of thermal  equilibrium 
to move at  wx and  hence  to  drive  the  antenna at its resonant  frequency. 

1 

1 '  

Equation 216 shows that, with  the  effect of thermal  torque  deleted by setting y, ( t )  = 0, the  tor- 
sional  response  depends upon the magnitude of the  torsional  damping  ratio 5, and upon the  non-linear 
generalized  force cn* ( t ). The  fact  that c,' ( t ) depends upon the  actual  position of the  antenna  and i t s  
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Figure  47-Tip  motion of 30' boom for  nominal  param- 
eters and  torsional  damping ratio .10 when  placed  in 
direct  sunlight  at  time zero. 

Figure  48-Tip motion of 30' boom for  nominal  param- 
eters  and torsional  damping ratio .20 when placed  in 
direct  sunlight  at  time zero. 

position of thermal  equilibrium  leads  to results that are  extremely complex.  The  judicious  choice 
of an  example,  however,  can  clearly  illustrate the aforementioned  observation.  Accordingly, F'ig- 
ures  46, 47, and 48 show how the  resultant  response of a nominal 30' antenna  differs  for  the  tor- 
sional  damping  ratios 0.0, 0.1, and 0.2 respectively. 
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- In  Figure 46, torsional damping is taken  to be zero.  From  time  zero,  the  torsional  response 
shown in  Figure 49 at the antenna tip  gradually  builds  up at the first torsional  frequency uq . This 
has  the  dual  effect of causing  the  position of thermal  equilibrium (shown in  Figures 50 and 51) to 
change at about  and of causing  an  averaging of the  temperature  distribution. Both effects  are 
seen in Figures 50 and 51. Because the position of thermal  equilibrium  changes at the  frequency 
w the  effective  thermal  loading  acts as a high-frequency  forcing  function.  This  has only a slight 

1 

1 

'pl ' 

100 

Figure  49-Torsional  component of tip  motion of the 30' boom studied in  Figure 46. 

i" 

Figure 50-X, component of thermal equilibrium  position of the 30' boom studied i n  Figure 46. 
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effect  on  the  transverse motion, as shown in  Figures 52 and 53, and does  not  excite  unstable  trans- 
verse  oscillation.  The  effect of temperature  averaging  appears  in tha t  the  curves shown are   c loser  
to  the  time axis after  transient  response,  rather than  during it. 

In Figure 47, the  torsional  damping  ratio 5, is 0.1. Here  the  amplitude of the  torsional re- 
sponse  achieved  during  the  initial  thermal  transients, shown in  Figure 54, is Seen to  decay 

- 5  ft 
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-~ ""_ ~~ 

I 
200 1 0 0  

~ ~~ ? " -~ 
300 400 
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Figure 51-Y, component of the  thermal  equilibrium  position of the 30' boom studied in Figure 46. 
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Figure 52-X, component of actual  tip position of the 30' boom studied in Figure 46. 
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Figure 53-Y, component of actual  tip position of the 30' boom studied in Figure 46. 
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gradually  to  zero at a non-resonant  frequency. This decay  causes  the  position of thermal  equilib- 
rium, shown in  Figures 55 and 56, to change at a non-resonant  frequency  and  gradually  decay  to 
the  position of static thermal  equilibrium.  This  change  causes  the  transverse  motion, shown in  Fig- 
u re s  57 and 58, also  to  damp out to  the  displaced  position of static  thermal  equilibrium. 

Figure 54"Torsional component of tip  motion of the 30' boom studied i n  Figure 47. 
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Figure 55-X, component of thermal equilibrium  position of the 30' boom studied i n  Figure 47. 
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Figure 56-Y, component of thermal equilibrium  position of the 30' boom studied i n  Figure 47. 
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Figure 57-X, component of actual  tip position of the 30' boom studied in  Figure 47. 

5 ft Y, Component of Actual Tip Position 

Figure 58-Y, component of actual  tip  position of the 30' boom studied in  Figure 47. 

In Figure 48, the  torsional  damping  ratio 5, is 0.2. Here  the  torsional  response, shown in  Fig- 
u r e  59, is found to  increase  gradually in amplitude, with a strong component at  the  first  natural 
bending  frequency w X l .  A s  the  position of thermal  equilibrium  depends upon the  torsional  response, 
it too  changes  at  about wxl . This change is seen  in  Figures 60 and 61. The  resultant  effect is to 
drive  the  system at resonance  and  hence  to  excite  the  large-amplitude  thermally-induced  trans- 
verse  motion  shown  in Figures 62 and 63. 

E f f e c t  o f  Torsional Rigidity 

Figures 64, 65 and 66 contain curves which indicate a practical  means of designing a deploy- 
able  antenna  that wil l  be stable in direct  sunlight.  The  curves  show  the  effect of varying  the 
torsional rigidity of the  antenna.  Figure 64 shows  the  response of the  nominal 60' antenna,  which 
is obviously  unstable;  in  Figure 65, the  torsional  rigidity is increased by a factor of 10, to 
0.5 lb-in.*. The slight increase in  the  response  amplitude  shows  that, as the  torsional  response 
(not  shown) has been  reduced by a factor of nearly 10 in amplitude,  the  effect  on  tempera- 
ture averaging of large-angle  torsional motion has also been  reduced,  with a corresponding increase 
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Figure 60-X, component of thermal equilibrium  position o f  the 30' boom studied i n  Figure 48. 

Figure 61-Y, component of thermal equilibrium  position of the 30' boom studied i n  Figure 48, 
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Figure 62-X, component of thermal equilibrium  position of the 30' boom studied i n  Figure 48. 
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Figure 63-Y, component of actual  tip  position of the 30' boom studied i n  Figure 48. 

in  the  effective  thermal  loading. In Figure 66, the  torsional  rigidity is increased above i ts  nominal 
value by a factor of 15, to 0.75 lb-in.2.  Here  the  amplitude of the  torsional  motion has been r e -  
duced to  the point where it no longer has an  effect upon the  position of thermal  equilibrium.  The 
resulting  transverse motion, as shown, is stable. 

Various  manufacturers have used this  idea  and have  submitted  flight-quality  antennas  to NASA/ 
GSFC for  evaluation; all the antennas  submitted  have  the  seams of the  open-section  cylinder  zip- 
pered  in  various ways. Each of these  designs  exhibits a torsional  rigidity  at  least 1,500 times 
greater  than  that of the  nominal  model  defined,  and  about 100 times  greater  than  needed  to 
achieve  stability. 
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Figure 64-Tip motion of 60' boom for nominal param- Figure  65-Tip  motion  of 60' boom  for nominal param- 
eters and torsional rigidity .05 Ib-in.2 when placed  in eters and torsional rigidity .5 Ib-in.'  when  placed  in 
direct sunlight at  time zero. direct  sunlight at time  zero. 

Both RAE (Radio  Astronomy  Explorer),  launched  September 1968 and OGO-VI (Orbiting Geo- 
physical  Observatory), launched  June  1969, use  the  zippered-antenna  concept. As predicted  the 
four 750 foot  long booms on RAE and the two 30 foot booms on OW-VI are  stable  in and out of 
sunlight. 
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Applications t o  Particular  Spacecraft  
The  original  design  specifications  for  sev- 

eral large  spacecraft  such as Nimbus, ATS, 
FR II, and AAP (Apollo Applications)  have  called 
for  the  use of long, torsionallyweak  thin-walled 
cylinders of open section,  some with  and  some 
without tip weights. The  digital  program  used 
to  derive  the  figures  previously  presented  has 
been  used  to  studythe  thermal  response of each 
of these  proposed boom configurations.  The re-  
sults  to  be  presented show that i f  these con- 
figurations  were  used a thermal  instability 
could exist and  seriously  degrade  the  per- 
formance of the  satellites. On the  basis of 
these  results, NASA has  initiated a design 
change  that  will call  for  the  use of zippered- 
type  booms on each of the  aforementioned 
satellites. 

The  parameters  (listed  in  Table  3,  earlier) 
that  define  the boom used on OGO IV can  be  used 
to define the  proposed  booms on FR 11, ATS, and 
AAP except  for boom length  and  tip weight. 

For the  French  satellite, FR 11, a 32' boom 
had been  proposed  with a tip weight  weighing  6 
lb and  having a moment of inertia of .00258 
slug-ft2.  The  predicted  response is shown in 
Figure 67. The  predicted  motion is unstable. 

An indication of the  effect of introducing a 
tip weight into  the  system  can  be  seen by com- 
paring  this  result with that shown in  Figure 42. 
Both booms a r e  of approximately  the  same 
length;  however, one has a tip weight,  and  the 
other  does not. It appears  that  the  addition of 
a tip weight contributes  to  the  instability of the 
system. 

10 ft 

I IO f t  

Figure 66-Tip motion of 60' boom for nominal  param- 
eters and torsional r igidity .75 Ib-in.2 when placed i n  
direct  sunlight  at  time zero. 

The  proposed boom for ATS was 123.5'  long  and  had a tip  weight  weighing  8  lb  with a moment 
of inertia of about .00266 slug f t 2 .  The  predicted  response is shown in  Figure 68. The  predicted 
motion is unstable. 

The  proposed boom for  an AAP experiment  was  120'  without  tip weight.  Again the  predicted 
motion (shown in  Figure  69) is unstable.  The  influence of tip weight on response  characteristics 
can  be  seen by comparing  Figures 68 and 69. 
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i 
Figure 67-Tip motion  of 32' boom with 6-lb tip  weight 

origfnally proposed for use on French satellite FR I I .  

25 f t  

I 
IO f t  

Figure 68-Tip motion  of 123.5' boom with 8-lb t ip 
weight  originally proposed for use on A n .  

The  originally  proposed boom for Nimbus  differed  significantly  from  that  described in Table 3. 
Its deployment  mechanism w a s  designed  so  that  the  length of the boom  could be  changed by ground 
command. Preliminary  studies  indicated  that  lengths of 25', 35',  and 45' would be  used  during 
flight;  the  stability of motion at each  length  was of interest. A list of the nominal parameters  used 
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Table  4 
~~ - 

Antenna  mater ia l  = polished  beryl l ium  copper  

25 ft 

Antenna  length = L = 45, 3 5 ,  25 ft 

P e r i m e t e r  of cross- 
section = P = 3.5 in. 

Tota l   over lap   angle  = 4 = 155   deg  

Wall   th ickness  = h = .004 in. 

Weight   densi ty  of 
ma te r i a l  = p = -2714  lb/in.3 

Tip  weight = W, = 10  Ib 

T ip   i ne r t i a  = I, = .002 slug f t 2  

Bending  st iffness = E1 = 133.4  Ib f t 2  

I 
Damping  ra t io  for 
to r s ion  = 5,, = .1 

Damping   ra t io   for  
bending = 5 ,  = .005 

Tors iona l   r ig id i ty  = C, = .7162 lb-in.2 

Warping  r igidi ty  = C, = 3.546 X l o 4  Ib-in! 

Thermal   conduct ivi ty  = KT = 4.167 Btu/(hr-in.-"F) 

Specific  heat = c = .1 Btu/(lb-"F) 

Thermal   expans ion  
coefficient - e c  = .104x in./(in.-OF) 

Emiss iv i ty  = E = -06 

Absorptivity = as = .35 
I 25 ft 

Figure 69-Tip motion of 120' boom with zero tip  weight 
originally  proposed  for use on a n  Apollo  Applications 
experiment. -___ I 
to  define  the Nimbus boom is given in Table 4. The  resultant  response of the 25',  35', and 45' 
booms is shown in  Figures 70, 71, and 72. 

I 
From  these  figures (70 through 72) it is evident  that a boom which is significantly  different in 

diameter,  thickness,  and  absorptivity  exhibits  the  same  thermally-induced  instability. It is recom- 
mended, therefore,  that  any  thin-walled  cylinder of open section be  analyzed  before it is used on an 
actual  spacecraft. 
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Figure  70-Tip  motion of originally proposed 25' Nimbus 
boom with 10-lb tip  weight. 

10 ft - 

I lOf t  

Figure  71-Tip motion of originally proposed 35' Nimbus 
boom with 10-lb tip  weight. 



CONCLUSIONS 
Most  three-axis  stabilized satellites de- 

ploying  long  booms  have  been  plagued  with 
varying  degrees of anomalous  spacecraft body 
motion. This  motion, at   t imes,  is solely low 
frequency (i.e., near  orbital),  but  in  several 
instances, when the  booms  used are thin  walled 
cylinders of open  section,  the  motion is high 
frequency  (i.e.,  near  the  fundamental  beam  fre- 
quency).  With regard to the  anomalous low fre- 
quency  motion,  there is a growingsuspicion  that 
the  cause is a nonlinear  resonance which allows 
exchange of energy  between  roll,  pitch,  and yaw 
motion. Since  the boom studied in this report 
is, by definition,  rigidly  clamped  in  inertial 
space,  the  conclusions  reached  cannot be di- 
rectly  applied to the low frequencyphenomenon. 
With regard to  the high frequency  phenomenon, 
the following conclusions  can  be  drawn: 

1. The theory of thermally-induced  vibra- 
tion  presented  here  can  be  used to  explain  the 
anomalous  spacecraft-body  motion  observed  on 
many three-axis-stabilized  satellites deploying 
long,  torsionally weak  thin-walled cylinders of 
open section  in  direct  sunlight. 

2. The  problem of designing a thermally 
stable deployable  antenna  can  be  solved by zip- 
pering  the  seam of the  open-section boom so as 
to  increase its torsional  rigidity by several 
orders  of magnitude. 

3. Any satellite that requires long  append- 
ages  and  geometric  stability should  not use  tor- 
sionally  weak  thin-walled  cylinders of open 
section. 
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Appendix A 

Thermal  Bending  Moment  Components and Thermal  Torque 

The  derivations  presented  in th i s  appendix are a brief  summary of those  given  in  more  detail 
i n  Reference 1. 

The  thermoelastic equation for  longitudinal  thermal  stress at a point ( s ,  z )  at time t on the 
surface of the boom is 

where 

3z ( s ,  z .  t ) = longitudinal thermal  stress, 

c ( s ,  z, t ) = longitudinal  thermal  strain, 

e c  = thermal  expansion  coefficient, 
.-" 
T( s ,  z ,  t )  = absolute  temperature, 

ry 

T, = absolute  ambient  temperature, 

E = Young's  modulus of elasticity. 

The longitudinal thermal  strain of any fiber passing  through  an arbitrary cross-section  along 
the boom can  be  adequately  described by 

E Z  ( s ,  2, t )  = f, (2, t )  -i x c ( s )  f ,  (2' t )  -i y , ( s )  f 2 ( z .  t ) ,  

where 

x C  ( s )  = x-coordinate of point s on cross-section, 

y, ( s )  = Y-coordinate of point s on cross-section, 

I , ( z , t ) , f ( Z ,  t ) , f ( Z ,  t ) = functions that are obtainable  from  the  equilibrium  conditions. 

The  equilibrium  conditions  require tha t  the  resultant  force  and  moments about  the  principal  axes 
of the  cross-section  vanish; that is, 

h y z   ( s ,  z .  t )  ds  = huz ( s ,  z ,  t )  y, ( s )  ds huz ( s ,  2 ,  t )  x c  ( s )  ds  = 0 . 6 Jop (A3 1 
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It follows from the  determination of the  three  functions f ( Z ,  t ) , f ( Z ,  t ) ,  and f ,  ( Z ,  t ) that 
the longitudinal thermal  stress is 

BMy ( z .  t )  BMx ( z ,  t )  
T~ ( s ,  z .  t )  = Eec [Trn ( 2 ,  t )  - ? ( s ,  z ,  t ) ] -  x, ( s )  + 

I Y  I X  
Y, ( s )  

where 

(A4 1 

The  quantities BMx ( z ,  t )  and BMy ( z ,  t ) are the  thermal bending moment  components  about  the x 
and Y principal  axes of inertia,  respectively, of the  cross-section at ( z ,  t )  . 

For  thin-walled  members of open section,  the  shear  stress r( s ,  z ,  t )  is related  to  the  longi- 
tudinal s t r e s s  c r z  ( S ,  Z ,  t )  by the  partial  differential  equation 

Substituting  Equation A4 along with the  geometric  identities 
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f 
into  Equation A10, applying  the  chain  rule of differential  calculus  to  eliminate  differentiating the 
temperature  distribution with respect  to z ,  and  integrating both sides of the equation from 0 to s 

yield  the  expression  that  defines the shear   s t ress  distribution.  That is, 

The  element of torque dTSC ( 2 ,  t )  due  to  the  shear  stress  at  an  element ds of unit  longitudinal 
length on the  surface  can be  obtained  from the  expression 

where 

+ est = vector  from  the  shear  center  to  the  surface  element ds. 

Since Gsc may  be  written as 

" 4 est - e s  -t 7 ,  

where 

+ 
e S  = vector  from  the  shear  center to the  geocenter of the cross-section, 

= radius  vector  to  the  surface  element d s ,  

it follows  from  geometry that 



Hence  the  thermal  torque is obtainable  from  the  expression 

where h q s ,  Z ,  t )  is defined by Equation A13. After the appropriate  substitutions  and  integrations 
have  been  made,  the  expression  for the thermal  torque is found to be 

where 

and 
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Appendix B 

Uncoupled  Bending  and  Torsional  Modes of  Vibration 

In the  subsection,  "Equations of Undamped-Uncoupled Thermally-Induced  Vibration," it is 
shown that,  to  obtain  the  solution  to  the  equations of thermally-induced  vibration,  the  uncoupled 
normal  modes of bending  and  torsional  vibration  must  be  determined.  These  modes of vibration a r e  
the  linearly independent  solutions  to  the  eigenvalue  problems  defined by the  differential  equations 

E1 -7 - p*  wx2 x ( z )  = 0 
d 4  x ( z )  

dz 

and  their  respective  boundary  conditions 

x ( 0 )  = y ( 0 )  CP(0) = 0 
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Since  Equations B1 and B2 are identical  in  form  and  have  the  same boundary  conditions, only the 
solutions  to B1 and I33 will  be outlined. 

Bending Modes of Vibration 

Let 

Then  Equation B1 may  be  rewritten as 

d4 x ( z )  

dz4 
" ~ ~ ~ ( 2 )  = o . 

The  general  solution  to  this  equation is 

x ( z )  = D, c o s h h z  + D 2 s i n h A z  + D cosAz + D, s i n k  . 3 (BIOI 

Directly  substituting  into  the  four  boundary-condition  Equations M a ,  B5a,  B6a,  and  B7a yields 

0 = D , + D 3 ,  

0 = D , + D , ,  

0 = D c o s h A ~  t D, s i n h k L  - D, COSAL - D, s i n h L ,  

where 

WB = p*Lg . 0315) 

For a non-trivial  solution of these  equations  to  exist,  the  determinant of the  coefficients of D, , D, , 
D,, and D, must  be  equal  to  zero.  The  evaluation of this determinant  yields what is commonly 
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referred  to as the  "frequency  equation."  It is found to be 

wT - 1 + sec XL sech AL . 
" w, XL( tan  AL - t anh IL)  

The  nth  solution  to  this  equation  (B16)  in  ascending  order of magnitude  will  be  written as (XL), . 
It  follows  from  Equation B8 that  the nth natural  frequency of the  clamped free beam with tip  weight 
is 

Associated with each  eigenvalue (XL), there exists an  eigenvector.  This  eigenvector is the 
11 th mode of vibration.  It is obtained by substituting 

(B18) 

into B10 to  obtain 

x,, ( z )  Dl ,  cosh A n  z f D,, s i nhh ,  z f DSn cos An z f D,, s i n i n  z . 0319) 

Directly  substituting B19 into  the  boundary-condition  Equations ma, B5a, and B6a  and solving  the 
equations  simultaneously  yield 

x, ( z )  = D I n  coshh ,  z zsechX,  z - t a n h h ,  z 

s i n X n L s e c h X n  L f  tanhh,  
cos A n  L sech X,, L + 1 (cos An z sechX, z - 

In order  to  define uniquely the  magnitude of Dl" , the  modes  must be normalized.  The  ortho- 
gonality  relation that defines D I n  for  this  analysis  will  be  taken  to  be 

w, + w, 
p' ( z )  xn ( z )  xm ( z )  dz = ~ g 'm.n 7 

where 



For  numerical  computation  and  notational  purposes it is convenient  to  solve  Equation B3 in 
te rms  of dimensionless  quantities. 

Let 

z = Z ' L .  

then  Equation B3 becomes 

and  the  boundary  conditions B ~ c ,  B5c, B6c, and B7c become 

Equation B26 h a s  the general  solution 

q ( z * )  = E, s i n h k a z '  + E, c o s h k a z '  + E, s i n k y z '  + E, c o s k y z '  , 

where 

(B27, B28, B29) 

0) 
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In a manner  analogous to that of the  preceding  subsection  Equation B31 is substituted  into  the  four 
boundary-condition  equations B27 through B30 to  yield 

0 = E, + E , .  

0 = kaEl f kyE, , 

0 = E , k 2 a 2 s i n h k a ~ E ~ k 2 a 2 c o s h k a - E 3 k 2 y 2 s i n k y - E ~ k 2 y 2 c o s k y ,  (B3 8) 

0 = E, (- k3 ay2 c o s h   k a  t - IT 

I* L 

f E, (-k3 ay2 s i n h   k a  f - IT 

I s  L 

+ E, (k3 ya2 cos k y  + - 

+ E, ( -k3 y a 2 s i n   k y  f - 

For a non-trivial  solution of these  equations  to  exist,  the  determinant of the  coefficients of E , ,  E? , 
E,, and E, must  be  equal  to  zero.  The  evaluation of th i s  determinant  yields  the  frequency  equation 

2X2 sec k y  s e c h   k a  f k 2  (1 + s) f kX t a n   k y   t a n h  ka  
1, 
" 

1 -  

I s  L 
Xk2 h T  (a t a n  ky - y t a n h   k a )  

If the  substitutions 



a r e  made,  the  frequency  Equation (B40)  may be  rewritten as 

2 (%)'sech ka' secky' t- k 2  (1 t- y)  + X' tank.).' t a n h k u '  
?Ak 2 

IT - 
" " 

It is obvious  that  either  Equation I340 or B44 can be  used  to  determine  the  natural  frequencies 
of the  cylinder of open section with tip  inertia when the  tip is free  to  warp.  It is convenient when 
numerically  solving  the  frequency  equation,  however,  to  use  Equation EM0 for  cases  where k2 > 100 
and  to  use  Equation J344 when k2 < 100. This  choice is made  to avoid the  inherent  problems  associ- 
ated with digitally  taking  the  difference  between  very  large  nearly  equal  numbers. 

Let A,, be the nth value of A that  satisfies  the  frequency  equation i n  ascending  order of mag- 
nitude.  It follows  then  that  the nth torsional  natural  frequency as defined  in  Equation I332 is 

The nth  eigenvector,  that is, the n t h  torsional mode of vibration, is obtained by substituting A, into 
the  general  solution given by Equation E31. This  yields 

9, (2') = E,, s i n h  ka,, z *  t- E,, cosh ka, z *  + E,, s i n  ky,, Z *  t- E,, cos ky, Z '  , (B46) 

where 
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Substituting  into  Equations B27, B28, and B29 and  solving  for  the unknown coefficients  yield  the  nth 
torsional  mode of vibration. This is 

where 

an  (a, t anh  ku, + y, sech   ka ,   s in   ky ,  1 
Gn = a,' + y,' sech  ka,   cos  ky,  

The  magnitude of E,, can  be  specified by requiring  that  the mode shape  satisfy  the  normaliza- 
tion  condition 

where 
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Appendix C 

list of  Symbols 

Lowercase English 

amplitude  coordinate  associated  with  the n th  transverse bending  mode in the 
(x1 ,  zl) plane 

amplitude  coordinate  associated  with  the n t h  transverse bending  mode in  the 
(yl , Z, ) plane 

amplitude  coordinate  associated with the nth torsion  mode 

C specific  heat of material 

thermal  expansion  coefficient of material 

h 

rn 

distance between  the  geometrical  center  and  the  shear  center of the  cross- 
section 

acceleration of gravity 

thickness of cylinder wall 

orthonormal  set of basis vectors  parallel  to body axes  triad [x, Y ,  zl re-  
spectively at ( z ,  t ), but  having their  origin  at z = 0 

orthonormal  set of basis vectors  parallel  to  inertial  axes  triad [ x 1 ,  Y, , z,] 
respectively, having their  origin at z = 0 

positive  integer 

positive  integer 

positive  integer 

unit  vector  normal  to  the  cross-section  and  directed  outward at point s on 
the  circumference 

nth  generalized  thermal  coordinate at thermal  station z and  time t 

radius of cross-section 
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S arc length measured  from  outer  to inner seam  around  the  cross-section 

t coordinate  used  to  measure  time 

nth normalized  transverse bending  mode of vibration  in  the (x1, zl) plane 

distance  from  the point s on the  cross-section  to  the Y - a x i s  

nth  normalized  transverse bending  mode of vibration  in the ( Y 1 ,  Z, ) plane 

Yc (SI distance  from  the point s on the  cross-section  to  the x-axis 

Z coordinate  used  to  measure  arc length  along  the  centroidal axis of the boom 

Z '  arbitrary point on centroidal  axis between z and L 

Uppercase English 

generalized  displacement  coordinate  associated with the nth transverse bend- 
ing  mode  in the X , ,  z, plane 

An* ( t )  generalized  force  associated with the  generalized  displacement  coordinate 
An ( t )  

generalized  displacement  coordinate  associated  with  the  nth  transverse  bend- 
ing  mode in the ( Y l  , zl) plane 

Bn* ( t )  generalized  force  associated with the  generalized  displacement  coordinate 
Bn ( t )  

BM, ( 2 ,  t )  thermal bending  moment  about  the x-axis  at (z, t ) 

BM, ( z ,  t )  thermal bending  moment  about  the Y-axis a t  ( z ,  t )  

cn ( t )  generalized  displacement  coordinate  associated  with  the n t h  torsional  mode 

generalized  force  associated with the  generalized  displacement  coordinate 

cn ( t )  

torsional  rigidity 

warping  rigidity 

constants of integration (i = 1, 2, . . . ) 

E Young's  modulus of elasticity 

E1 bending  stiffness 
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G 

G' 

K,. K; 

N 

N '  

resultant  force  distribution  along boom 

components of resultant  force  distribution with respect  to  basis  vectors 
[i, j ,  kl 
" -  

component of stress couple parallel  to the X - a x i s  at (z, t ) ;  I'flexural  couple" 

component of s t r e s s  couple  parallel  to the Y - a x i s  at ( 2 ,  t); "flexural couple" 

shear  modulus of elasticity 

component of stress couple parallel  to  the Z - a x i s  at (z, t )  ; "torsional couple" 

average  cross-sectional  geometrical  moment of inertia 

cross-sectional  geometrical  moment of inertia about  the x-axis 

cross-sectional  geometrical  moment of inertia about the Y - a x i s  

mass  rotational  moment of inertia  per  unit length  about the  shear  center  axis 

mass  rotational  moment of inertia of the tip weight 

solar  radiation  intensity 

components of resultant couple  distribution  per  unit  length  parallel  to  the 
x-, Y-axes respectively  at ( 2 ,  t )  

components of K ,  K '  associated with  kinetic  reaction of transversely  acceler- 
ating  mass  elements,  respectively 

sum of K, , K, and KB(, K,' respectively 

components of K ,  K' associated with the  dissipative  forces 

components of K ,  K '  associated with the  thermal  loading 

components of K ,   K '  associated with kinetic  reaction of torsionally  accelera- 
ting  mass  elements 

thermal conductivity of material 

antenna  length 

moment of the  internal stress distribution  in  the  cross-section about its 
centroid 

component of stress resultant  parallel  to x-axis at ( Z ,  t ) 

component of stress resultant  parallel  to Y-axis at (z, t ) 
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total  perimeter of cross-section,  tape width 

generalized  thermal input associated  with  the  nth  thermal  mode  and nth gen- 
eralized  thermal  coordinate q,, ( z  ,. t )  at ( z  , t )  

transverse  acceleration of the  mass  element at z at time t 

unit vector  normal  to z-axis and  directed  toward  sun at ( z  , t )  

component of stress  resultant  parallel  to z-axis at ( z ,  t ) ;  "tension" 

steady  state  mean  temperature of cross-section  in  thermal  field 

absolute  temperature of the point ( s ,  z )  on the  surface of the boom at  t ime t 

deviation of the  absolute  temperature ?( s ,  z ,  t ) from  the  mean To 

nth normalized  thermal  mode 

thermal  torque at ( z ,  t )  about axis normal  to  cross-section 

resultant of the  internal  stress  distribution on the  cross-section 

thermal  torque  coefficient  used  to  define Ts ( z ,  t ) 

boom  weight 

tip weight 

body axes at ( z ,  t )  

body axis at ( z ,  t ) ; principal axis of inertia  normal  to axis of symmetry  and 
longitudinal axis, directed so that X, Y ,  Z is a right-handed  system 

body axis at ( z ,  t ) ;  principal axis of inertia  parallel  to axis of symmetry 
and  normal  to longitudinal axis, directed away from  overlap 

body axis parallel  to  longitudinal axis, directed  positive  from  the point z 

toward  the  tip of the boom 

inertially  fixed axis system,  coincident  with  the body axes at z = 0 

displacement  coordinates of the point z along  the  centroidal axis at  time t in 
the [x1, Y, , z,] coordinate  system 

displacement  coordinates of the point z along the centroidal axis of the boom 
when it is aligned  along  the  instantaneous  thermal  equilibrium  shape at time 
t measured  in  the [x1, Y ,  , z , ]  coordinate  system 
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Script Greek 

5, 

I 

K ,  K '  

'n 

P 

P* 

0 

7 

amplitude of n t h  mode at time t in  the  modal  expansion of X, ( z ,  t ) 

absorptivity of boom surface 

amplitude of nth mode at time t in  the  modal  expansion of Ys ( z ,  t) 

viscous  damping  coefficient  for  transverse motion 

viscous  damping  coefficient  for  torsional  motion 

amplitude of nth mode at time t in the  modal  expansion of 9 ,  ( 2  s >  

distance between geometrical  center  and  centroid of cross-section 

Kronecker  delta  function 

emissivity 

transverse damping  ratio 

transverse damping  ratio of nth  transverse bending  mode 

torsional damping ratio 

torsional damping ratio of n t h  torsional  mode 

defined  constant = im 
Euler  angle  sequence  used  to  define  rotational  orientation of [ i , j , kl rela- 
tive  to [ T1, T,, G , ]  

" +  

curvature component  about the x-, y-axes at ( Z ,  t) 

thermal  decay  constant of n th  thermal  mode 

weight  density of material 

mass   per  unit  length of boom 

Stefan-Boltzmann  constant 

twist  about z-axis at ( z , t) 

thermal  time  constant of nth thermal  mode 

angular  amount of overlap 

angular  amount of twist at (2, t )  of the cross-section about its longitudinal 
a X i S  
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torsional  coordinate of the  point z along  the boom  when it is aligned  along  the 
instantaneous  thermal  equilibrium  shape at time t 

Qn ( z )  nth normalized  torsional  mode of vibration 

angular  position of the sun measured  relative  to  the  cross-sectional  principal 
axes of inertia 

w x  nth  natural  frequency of transverse  vibration 

w 
'pn 

nth natural frequency of torsional  vibration 

Printed  Greek 

B functions  used  in  defining  generalized  thermal  input Q, ( z  , t ) 

r defined  parameter 

E ( Z ' ,  z ,  t )  vector connecting  points z '  and z along  the  centroidal axis at time t 

E: functions  used  in  defining  generalized  thermal  input Q, ( Z ,  t ) 

H 

0 

defined  parameter 

component of resultant couple  distribution  per  unit  length  parallel  to z-axis 
at ( z ,  t )  

component of o associated with  kinetic  reaction of torsionally  accelerating 
mass  element 

O D  component of o associated with the  dissipative  force 

0" component of @ associated with the  thermal loading 

K applied  resultant couple  distribution  along boom 
- 
E ( s ,  z ,  t )  defined to  distinguish between  sunlit  and  dark  sides of boom 

P n  parameter  used  in  generalized  force  expression;  associated with nth tor- 
sional  mode 

Tn parameter  used  in  generalized  force  expression;  associated with  nth trans- 
verse mode 

T(s, z ,  t )  function  used  to  define  the  heat  input  about  the  surface point ( s ,  z )  at time t 

nth  eigenvalue of the  thermal  characteristic  equation 

curvature  vector;  angular  velocity  vector  expressed  relative  to [ i ,  j , kl of 
the [X,  Y ,  21 axes when it slides at a constant rate along  the  longitudinal axis 
of the boom 

"-.. 
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